
CS388:	Natural	Language	Processing

Greg	Durre8

Some	slides	adapted	from	Vivek	Srikumar,	University	of	Utah

credit:	Machine	Learning	Memes	on	Facebook

Lecture	2:	Binary	
ClassificaJon

Administrivia

‣Mini	1	out,	due	next	Thursday

‣Waitlist	is	processed

This	Lecture

‣ Linear	binary	classificaJon	fundamentals

‣ LogisJc	regression

‣ Perceptron/SVM

‣ OpJmizaJon

‣ SenJment	analysis

‣ Feature	extracJon

Linear	Binary	ClassificaJon

ClassificaJon

‣ Embed	datapoint	in	a	feature	space

+
+
+ +

+
+

+
+

- - -
-

-
-

‣ Linear	decision	rule:	

x y 2 {0, 1}

f(x) 2 Rn

‣ Datapoint						with	label	

but	in	this	lecture											and					are	interchangeablexf(x)

(No	bias	term	b	—	we	have	
lots	of	features	and	it	isn’t	
needed)

w>f(x) > 0

+
+
+ +

+
+

+
+

- - -
-

-
-+

+
+ +

+
+

+
+

- - -
-

-
-

???

f(x)	=	[x1,	x2,	x12,	x22,	x1x2]

x1

x2

+
+
+ +

+
+

+
+

- - -
-

-
-

+
+
+ +

+
+

+
+

- - -
-

-
-

x1x2

x1

f(x)	=	[x1,	x2]

Linear	funcJons	are	powerful!

‣ “Kernel	trick”	does	this	for	“free,”	but		is	too	expensive	to	use	in	NLP	
applicaJons,	training	is														instead	ofO(n2) O(n · (num feats))

ClassificaJon:	SenJment	Analysis

this	movie	was	great!	would	watch	again

NegaJve

PosiJve

that	film	was	awful,	I’ll	never	watch	again

‣ Surface	cues	can	basically	tell	you	what’s	going	on	here:	presence	or	
absence	of	certain	words	(great,	awful)

‣ Steps	to	classificaJon:
‣ Turn	examples	like	this	into	feature	vectors

‣ Pick	a	model	/	learning	algorithm

‣ Train	weights	on	data	to	get	our	classifier

Feature	ExtracJon

Feature	RepresentaJon

this	movie	was	great!	would	watch	again PosiJve

‣ Convert	this	example	to	a	vector	using	bag-of-words	features

[contains	the]			[contains	a]			[contains	was]		[contains	movie]		[contains	film]

0 0 1 1 0

posiJon	0 posiJon	1 posiJon	2 posiJon	3 posiJon	4

‣ Very	large	vector	space	(size	of	vocabulary),	sparse	features	(how	many	
per	example?)

…f(x)	=	[

…

Feature	ExtracJon	Details

“I	thought	it	wasn’t	that	great!”	cri@cs	complained.

‣ TokenizaJon:

“	I	thought	it	was	n’t	that	great	!	”	cri@cs	complained	.

‣ Split	out	punctuaJon
‣ Split	out	contracJons
‣ Handle	hyphenated	compounds

‣ [contains	“the”]	is	a	single	feature	—	put	this	whole	bracketed	thing	into	
the	indexer	to	give	it	a	posiJon	in	the	feature	space

‣ Buildings	the	feature	vector	requires	indexing	the	features	(mapping	
them	to	axes).	Store	an	inverJble	map	from	string	->	index

Features	for	Person	Name	DetecJon

On	Sunday,	Thomas	and	Mary	went	to	the	farmer’s	market

‣ Do	bag-of-words	features	work	here?

‣ Instead	we	need	posi%on-sensi%ve	features

[contains	On]			[contains	and]			[contains	is]		[contains	Thomas]

1 1 0 1

posiJon	0 posiJon	1 posiJon	2 posiJon	3

‣ Everyone	word	in	the	sequence	gets	the	same	features	—	can’t	tell	if	a	
word	is	O	or	PER,	everything	gets	the	same	label

f(x)	=	[…

…

	O							O												PER						O				PER						O				O			O							O													O

Features	for	Person	Name	DetecJon

On	Sunday,	Thomas	and	Mary	went	to	the	farmer’s	market

0 1 1f(x,	i=4)	=	[…

	O							O												PER						O				PER						O				O			O							O													O

i	=		0								1												2							3						4							5				6			7							8											9

‣ Features	are	now	a	funcJon	of	posiJon,	each	word	has	a	separate	vector
‣What	features	make	sense?

‣ “Current	word”:	what	is	the	word	at	this	index?
‣ “Previous	word”:	what	is	the	word	that	precedes	the	index?

[currWord=Thomas]							[currWord=Mary]							[prevWord	=	and]

‣ All	features	coexist	in	the	same	space!	Other	feats	(char	level,	…)	possible

LogisJc	Regression

LogisJc	Regression

‣ To	learn	weights:	maximize	discriminaJve	log	likelihood	of	data	(log	P(y|x))

P (y = +|x) = logistic(w>x)

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

L(xj , yj = +) = logP (yj = +|xj)

=
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

sum	over	features

L({xj , yj}j=1,...,n) =
X

j

logP (yj |xj) corpus-level	LL

one	(posiJve)	example	LL

LogisJc	Regression

@L(xj , yj)

@wi
= xji �

@

@wi
log

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)

@

@wi

1 + exp

nX

i=1

wixji

!!

= xji �
1

1 + exp (
Pn

i=1 wixji)
xji exp

nX

i=1

wixji

!

deriv	
of	log

deriv	
of	exp

= xji � xji
exp (

Pn
i=1 wixji)

1 + exp (
Pn

i=1 wixji)
= xji(1� P (yj = +|xj))

L(xj , yj = +) = logP (yj = +|xj) =
nX

i=1

wixji � log

1 + exp

nX

i=1

wixji

!!

LogisJc	Regression

If	P(+	|	x)	is	close	to	1,	make	very	li8le	update	
Otherwise	make	w	look	more	like	x,	which	will	increase	P(+	|	x)

‣ Gradient	of	w	on	posiJve	example

‣ Gradient	of	w	on	negaJve	example

If	P(+	|	x)	is	close	to	0,	make	very	li8le	update	
Otherwise	make	w	look	less	like	x,	which	will	decrease	P(+	|	x)

‣ Can	combine	these	gradients	as

‣ Let	y	=	1	for	posiJve	instances,	y	=	0	for	negaJve	instances.	

= x(�P (y = + | x))
<latexit sha1_base64="NPcBk5M0GD+uF8be8oifzT+ws3U=">AAACEnicbVDLSsNAFJ3UV62vqEs3g0VoEUtSBd0Uim5cVrAPaEOZTCft0MkkzEzEEPoNbvwVNy4UcevKnX/jpM2ith64cDjnXu69xw0Zlcqyfozcyura+kZ+s7C1vbO7Z+4ftGQQCUyaOGCB6LhIEkY5aSqqGOmEgiDfZaTtjm9Sv/1AhKQBv1dxSBwfDTn1KEZKS32zXIM9H6mR6yWPE1g6g41SDGvwVKt0MGeVy32zaFWsKeAysTNSBBkaffO7Nwhw5BOuMENSdm0rVE6ChKKYkUmhF0kSIjxGQ9LVlCOfSCeZvjSBJ1oZQC8QuriCU3V+IkG+lLHv6s70RrnopeJ/XjdS3pWTUB5GinA8W+RFDKoApvnAARUEKxZrgrCg+laIR0ggrHSKBR2CvfjyMmlVK/Z5pXp3UaxfZ3HkwRE4BiVgg0tQB7egAZoAgyfwAt7Au/FsvBofxuesNWdkM4fgD4yvX3XLm3g=</latexit>

= x(1� P (y = + | x))
<latexit sha1_base64="psDLOTmBmCCTk9bnGYfSiqb/e5w=">AAACP3icfVBLS8NAGNzUV42vqEcvi6XQIpakCnopFL14rGAf0Iay2WzapZsHuxsxhP4zL/4Fb169eFDEqzc3bQ+1FQcWhpn52O8bJ2JUSNN80XIrq2vrG/lNfWt7Z3fP2D9oiTDmmDRxyELecZAgjAakKalkpBNxgnyHkbYzus789j3hgobBnUwiYvtoEFCPYiSV1DdaNdjzkRw6XvowhiULnsJGKYE1eKJ06s6Z5bJe/B3+J9o3CmbFnAAuE2tGCmCGRt947rkhjn0SSMyQEF3LjKSdIi4pZmSs92JBIoRHaEC6igbIJ8JOJ/ePYVEpLvRCrl4g4USdn0iRL0TiOyqZ7SgWvUz8y+vG0ru0UxpEsSQBnn7kxQzKEGZlQpdygiVLFEGYU7UrxEPEEZaqcl2VYC2evExa1Yp1VqnenhfqV7M68uAIHIMSsMAFqIMb0ABNgMEjeAXv4EN70t60T+1rGs1ps5lD8Ava9w8tfqrp</latexit>

x(y � P (y = 1 | x))
<latexit sha1_base64="7VeToV+p2z1K2vIcR2ioumtgbac=">AAACZ3icfVFbS8MwGE3rbdbLqhMRfImOwUQc7RT0ZTD0xccJ7gLbGGmWbmFpWpJULGX+SN9898V/YXYB5yZ+EDg553x8X068iFGpHOfDMNfWNza3MtvWzu7eftY+OGzIMBaY1HHIQtHykCSMclJXVDHSigRBgcdI0xs9TPTmCxGShvxZJRHpBmjAqU8xUprq2W+FCuwESA09P30dw6ILr2CtmMAKvNQ87S+IFxfWkvk/689FW6bGirtq69l5p+RMC64Cdw7yYF61nv3e6Yc4DghXmCEp264TqW6KhKKYkbHViSWJEB6hAWlryFFAZDed5jSGBc30oR8KfbiCU3axI0WBlEngaedkR7msTci/tHas/LtuSnkUK8LxbJAfM6hCOAkd9qkgWLFEA4QF1btCPEQCYaW/xtIhuMtPXgWNcsm9LpWfbvLV+3kcGXAKzkERuOAWVMEjqIE6wODTsIyccWR8mVnz2DyZWU1j3pMDv8o8+wZjaLLA</latexit>

Example
+(1)	this	movie	was	great!	would	watch	again

(3)	great	poten@al	but	ended	up	being	a	flop —
+(2)	I	expected	a	great	movie	and	leS	happy

xj(yj � P (yj = 1|xj))

[contains	great]	[contains	movie]
posiJon	0 posiJon	1

w	=	[0,	0]

1 1]f(x1)	=	[

1 1]f(x2)	=	[

1 0]f(x3)	=	[

P(y	=	1	|	x1)

w	=	[0.5,	0.5]

P (y = +|x) = logistic(w>x)

P(y	=	1	|	x2)	=	logisJc(1)	≈	0.75

w	=	[0.75,	0.75] P(y	=	1	|	x3)	=	logisJc(0.75)	≈	0.67

w	=	[0.08,	0.75] …

g	=	[0.5,	0.5]

g	=	[0.25,	0.25]

g	=	[-0.67,	0]

=	exp(0)/(1	+	exp(0))	=	0.5

RegularizaJon
‣ Regularizing	an	objecJve	can	mean	many	things,	including	an	L2-
norm	penalty	to	the	weights:

mX

j=1

L(xj , yj)� �kwk22

‣ Keeping	weights	small	can	prevent	overfirng

‣ For	most	of	the	NLP	models	we	build,	explicit	regularizaJon	isn’t	necessary

‣We	always	stop	early	before	full	convergence

‣ For	neural	networks:	dropout	and	gradient	clipping
‣ Large	numbers	of	sparse	features	are	hard	to	overfit	in	a	really	bad	way

LogisJc	Regression:	Summary

‣Model

‣ Learning:	gradient	ascent	on	the	(regularized)	discriminaJve	log-likelihood

‣ Inference

argmaxyP (y|x)

P (y = 1|x) � 0.5 , w>x � 0

P (y = +|x) =
exp(

Pn
i=1 wixi)

1 + exp(
Pn

i=1 wixi)

Perceptron/SVM

Perceptron

‣ Simple	error-driven	learning	approach	similar	to	logisJc	regression

‣ Decision	rule:

‣ Guaranteed	to	eventually	separate	the	data	if	the	data	are	separable

‣ If	incorrect:	if	posiJve,	
if	negaJve,	

w w + x

w w � x w w � xP (y = 1|x)
w w + x(1� P (y = 1|x))

LogisJc	Regressionw>x > 0

Support	Vector	Machines

‣Many	separaJng	hyperplanes	—	is	there	a	best	one?

+
+
+ +

+
+

+
+

- - -
-

-
-

Support	Vector	Machines

‣Many	separaJng	hyperplanes	—	is	there	a	best	one?

+
+
+ +

+
+

+
+

- - -
-

-
- margin

‣Max-margin	hyperplane	found	by	SVMs

Perceptron	and	LogisJc	Losses

‣ LogisJc	regression:	loss	=	—	log	P(+|x)

‣ Let’s	focus	on	loss	of	a	posiJve	example

‣ Throughout	this	course:	view	classificaJon	as	minimizing	loss

(maximizing	log	likelihood	=	minimizing	negaJve	log	likelihood)

‣ Perceptron:	loss	=
0							if	wTx	>	0

-wTx	if	wTx	<	0{
<latexit sha1_base64="7jF/axiKQ50qck453cB+aS7CDO0=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh17WL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bH7plJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDaz8TKkmRK7ZYFKaSYExmb5OB0JyhnFhCmRb2VsJGVFOGNpySDcFbfnmVtGpV76Jau7+s1G/yOIpwAqdwDh5cQR3uoAFNYBDCM7zCmzN2Xpx352PRWnDymWP4A+fzB5zSjWk=</latexit>

Take	the	gradient:	no	update	if	wTx	>	0,	else	update	with	+x)

Gradients	on	PosiJve	Examples
LogisJc	regression

Perceptron

x(1� P (y = 1|x)) = x(1� logistic(w>x))

x if w>x < 0, else 0

SVM	(ignoring	regularizer)

Hinge	(SVM)

LogisJc
Perceptron

0-1

Lo
ss

w>x

*gradients	are	for	maximizing	things,	
which	is	why	they	are	flipped

x if w>x < 1, else 0

Comparing	Gradient	Updates	(Reference)

x(y � P (y = 1|x)) x(y � logistic(w>x))

Perceptron
if	classified	incorrectly

0	else

SVM
if	not	classified	correctly	with	margin	of	1

0	else

(2y � 1)x

(2y � 1)x

=

y	=	1	for	pos,	
						0	for	neg

LogisJc	regression	(unregularized)

OpJmizaJon

Structured	PredicJon
‣ Four	elements	of	a	structured	machine	learning	method:

‣Model:	probabilisJc,	max-margin,	deep	neural	network

‣ ObjecJve

‣ Inference:	just	maxes	and	simple	expectaJons	so	far,	but	will	get	harder

‣ Training:	gradient	descent?

OpJmizaJon

‣ StochasJc	gradient	*ascent*
‣ Very	simple	to	code	up

‣ “First-order”	technique:	only	relies	on	having	gradient

‣ Newton’s	method

‣ Second-order	technique

Inverse	Hessian:	n	x	n	mat,	expensive!
‣ OpJmizes	quadraJc	instantly

‣ Quasi-Newton	methods:	L-BFGS,	etc.	approximate	inverse	Hessian

‣ Serng	step	size	is	hard	(decrease	when	held-out	performance	worsens?)

w w + ↵g, g =
@

@w
L

w w +

✓
@2

@w2
L
◆�1

g

‣ Can	avg	gradient	over	a	few	examples	and	apply	update	once	(minibatch)

AdaGrad

Duchi	et	al.	(2011)

‣ OpJmized	for	problems	with	sparse	features

‣ Per-parameter	learning	rate:	smaller	updates	are	made	to	parameters	
that	get	updated	frequently

(smoothed)	sum	of	squared	
gradients	from	all	updates

‣ Generally	more	robust	than	SGD,	requires	less	tuning	of	learning	rate

‣ Other	techniques	for	opJmizing	deep	models	—	more	later!

wi wi + ↵
1q

✏+
Pt

⌧=1 g
2
⌧,i

gti

ImplementaJon

‣ Supposing	k	acJve	features	on	an	instance,	gradient	is	only	nonzero	
on	k	dimensions

‣ In	PyTorch:	applying	sparse	gradients	only	works	for	certain	
opJmizers	and	sparse	updates	are	very	slow.	The	code	we	give	you	is	
much	faster

w w + ↵g, g =
@

@w
L

‣ k	<	100,	total	num	features	=	1M+	on	many	problems

‣ Be	smart	about	applying	updates!

SenJment	Analysis

SenJment	Analysis

Bo	Pang,	Lillian	Lee,	Shivakumar	Vaithyanathan	(2002)

the	movie	was	gross	and	overwrought,	but	I	liked	it

this	movie	was	great!	would	watch	again

‣ Bag-of-words	doesn’t	seem	sufficient	(discourse	structure,	negaJon)

this	movie	was	not	really	very	enjoyable

‣ There	are	some	ways	around	this:	extract	bigram	feature	for	“not	X”	for	
all	X	following	the	not

+
+

—

SenJment	Analysis

‣ Simple	feature	sets	can	do	pre8y	well!	

Bo	Pang,	Lillian	Lee,	Shivakumar	Vaithyanathan	(2002)

SenJment	Analysis

Wang	and	Manning	(2012)

Before	neural	nets	had	taken	off	
—	results	weren’t	that	great

Naive	Bayes	is	doing	well!

Ng	and	Jordan	(2002)	—	NB	
can	be	be8er	for	small	data

81.5				89.5Kim	(2014)	CNNs

SenJment	Analysis

https://github.com/sebastianruder/NLP-progress/blob/master/english/sentiment_analysis.md

…

‣ Best	systems	now:	
large	pretrained	
networks

‣ Stanford	SenJment	
Treebank	(SST)	
binary	classificaJon

‣ 90	->	97	over	the	
last	2	years

Recap

‣ LogisJc	regression,	SVM,	and	perceptron	are	closely	related;	we’ll	use	
logisJc	regression	mostly,	but	the	exact	loss	funcJon	doesn’t	ma8er	
much	in	pracJce

‣ All	gradient	updates:	“make	it	look	more	like	the	right	thing	and	less	
like	the	wrong	thing”

‣ Next	Jme:	mulJclass	classificaJon

