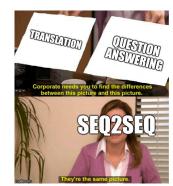
CS388: Natural Language Processing

Lecture 14: Seq2seq II, Attention

Greg Durrett



credit: NawaphonIsarathanachaikul on imgflip

Administrivia

- Project 2 out today
- Mini 2 graded soon
- Final project proposals due tonight (or Friday if you want)

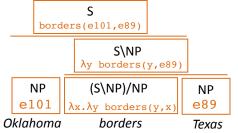
Recall: CCG

- ▶ Steedman+Szabolcsi 1980s: formalism bridging syntax and semantics
- ▶ Syntactic categories: S, NP, "slash" categories
 - ▶ S\NP: "if I combine with an NP on my left side, I form a sentence" verb
 - ► (S\NP)/NP: "I need an NP on my right and then on my left" verb with a direct object

S
sings(e728)

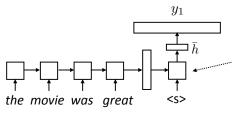
NP
e728
S\NP
hy. sings(y)

Eminem sings



Recall: Seq2seq Models

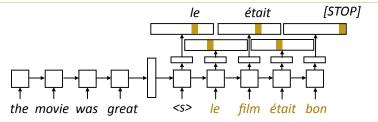
- ▶ Generate next word conditioned on previous word as well as hidden state
- ▶ W size is |vocab| x |hidden state|, softmax over entire vocabulary



 $P(y_i|\mathbf{x}, y_1, \dots, y_{i-1}) = \operatorname{softmax}(W\bar{h})$ $P(\mathbf{y}|\mathbf{x}) = \prod_{i=1}^{n} P(y_i|\mathbf{x}, y_1, \dots, y_{i-1})$

Decoder has separate parameters from encoder, so this can learn to be a language model (produce a plausible next word given current one)

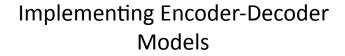
Recall: Training Seq2seq Models



- \blacktriangleright Objective: maximize $\sum_{(\mathbf{x},\mathbf{y})} \sum_{i=1}^n \log P(y_i^*|\mathbf{x},y_1^*,\dots,y_{i-1}^*)$
- One loss term for each target-sentence word, feed the correct word regardless of model's prediction (called "teacher forcing")

This Lecture

- Seq2seq implementation (continued)
- ▶ Seq2seq models for semantic parsing
- Attention motivation
- ▶ Attention definitions, math, mechanics

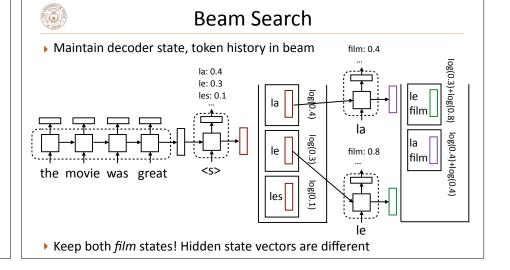


Implementation Details

- ▶ Sentence lengths vary for both encoder and decoder:
 - ▶ Typically pad everything to the right length and use a mask or indexing to access a subset of terms
- ▶ Encoder: looks like what you did in Mini 2
- Decoder:
- ▶ Test time: execute one step of computation at a time, so computation graph is formulated as taking one input + hidden state
- ▶ Training: you can execute all timesteps as part of one computation graph

Implementation Details (cont'd)

- ▶ Batching is a bit tricky: encoder should use pack_padded_sequence to handle different lengths. The decoder should pad everything to the same length and use a mask to only accumulate "valid" loss terms
- Beam search: can help with lookahead. Finds the (approximate) highest scoring sequence: $\arg \max_{\mathbf{y}} \prod_{i=1}^n P(y_i|\mathbf{x},y_1,\ldots,y_{i-1})$



Seq2seq Semantic Parsing

Semantic Parsing as Translation

"what states border Texas" ↓

lambda x (state(x) and border(x , e89)))

- ▶ Write down a linearized form of the semantic parse, train seq2seq models to directly translate into this representation
- ▶ What are some benefits of this approach compared to grammar-based?
- ▶ What might be some concerns about this approach? How do we mitigate them?

Jia and Liang (2016)

Handling Invariances

"what states border Texas"

"what states border Ohio"

- ▶ Parsing-based approaches handle these the same way
- ▶ Possible divergences: features, different weights in the lexicon
- ▶ Can we get seq2seq semantic parsers to handle these the same way?
- ▶ Key idea: don't change the model, change the data
- "Data augmentation": encode invariances by automatically generating new training examples

Data Augmentation

Examples

Jia and Liang (2016)

("what states border texas?", answer(NV, (state(V0), next_to(V0, NV), const(V0, stateid(texas)))))

Rules created by ABSENTITIES

ROOT → ("what states border STATEID?",
answer(NV, (state(V0), next_to(V0, NV), const(V0, stateid(STATEID)))))
STATEID → ("texas", texas)
STATEID → ("ohio", ohio)

- Lets us synthesize a "what states border ohio?" example
- ▶ Abstract out entities: now we can "remix" examples and encode invariance to entity ID. More complicated remixes too

Semantic Parsing as Translation

GEO x: "what is the population of iowa?" y: _answer (NV , (_population (NV , V1) , _const (V0 , _stateid (iowa)))) ATIS x: "can you list all flights from chicago to milwaukee" y: (_lambda \$0 e (_and (_flight \$0) (_from \$0 chicago : _ci) (_to \$0 milwaukee : _ci))) Overnight x: "when is the weekly standup" y: (call listValue (call getProperty meeting.weekly_standup (string start_time)))

- Prolog
- ▶ Lambda calculus
- Other DSLs
- ▶ Handle all of these with uniform machinery!

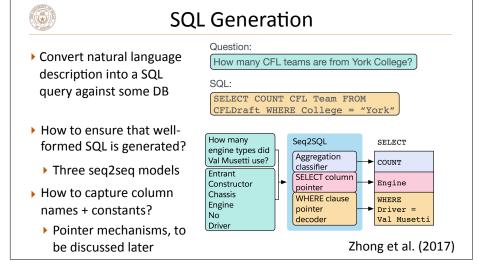
Jia and Liang (2016)

Semantic Parsing as Translation

	GEO	ATIS
Previous Work		
Zettlemoyer and Collins (2007)		84.6
Kwiatkowski et al. (2010)	88.9	
Liang et al. $(2011)^2$	91.1	
Kwiatkowski et al. (2011)	88.6	82.8
Poon (2013)		83.5
Zhao and Huang (2015)	88.9	84.2
Our Model		
No Recombination	85.0	76.3
ABSENTITIES	85.4	79.9
ABSWHOLEPHRASES	87.5	
CONCAT-2	84.6	79.0
CONCAT-3		77.5
AWP + AE	88.9	
AE + C2		78.8
AWP + AE + C2	89.3	
AE + C3		83.3

- ► Three forms of data augmentation all help
- Results on these tasks are still not as strong as hand-tuned systems from 10 years ago, but the same simple model can do well at all problems

Jia and Liang (2016)



Attention

"what states border Texas" ----- lambda x (state (x) and border (x , e89)))

- ▶ Orange pieces are probably reused across many problems
- Not too hard to learn to generate: start with lambda, always follow with x, follow that with paren, etc.
- LSTM has to remember the value of Texas for 13 steps!
- Next: attention mechanisms that let us "look back" at the input to avoid having to remember everything

Attention

Problems with Seq2seq Models

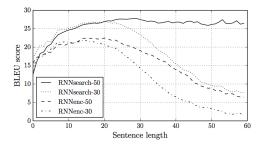
▶ Encoder-decoder models like to repeat themselves:

Un garçon joue dans la neige → A boy plays in the snow **boy plays boy plays**

- ▶ Why does this happen?
 - Models trained poorly (undertrained / haven't converged)
 - ▶ Input is forgotten by the LSTM so it gets stuck in a "loop" of generating the same output tokens again and again
- Need some notion of input coverage or what input words we've translated

Problems with Seq2seq Models

 Bad at long sentences: 1) a fixed-size hidden representation doesn't scale; 2) LSTMs still have a hard time remembering for really long periods of time



RNNenc: the model we've

discussed so far

RNNsearch: uses attention

Bahdanau et al. (2014)

Problems with Seq2seq Models

Unknown words:

en: The ecotax portico in Pont-de-Buis, ... [truncated] ..., was taken down on Thursday morning

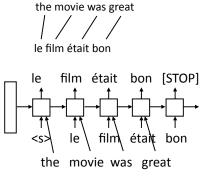
fr. Le portique <u>écotaxe</u> de <u>Pont-de-Buis</u>, ... [truncated] ..., a été <u>démonté</u> jeudi matin

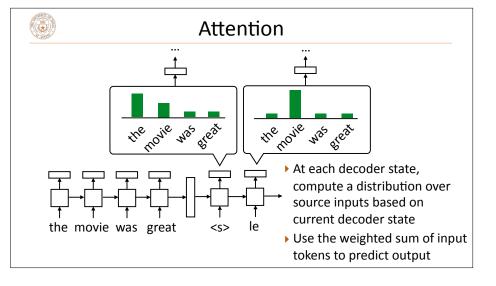
nn: Le unk de unk à unk, ... [truncated] ..., a été pris le jeudi matin

- ▶ Encoding these rare words into a vector space is really hard
- In fact, we don't want to encode them, we want a way of directly looking back at the input and copying them (Pont-de-Buis)

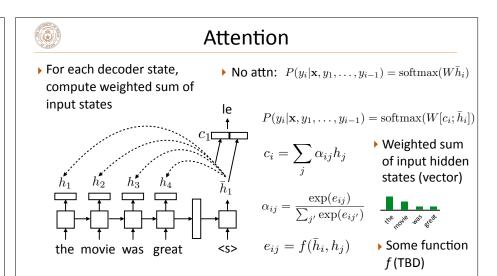
Aligned Inputs

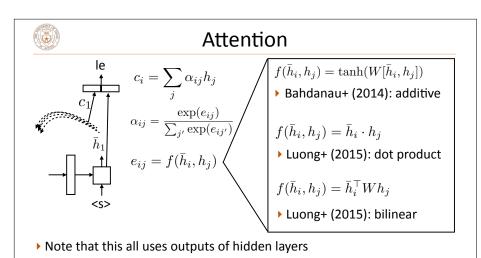
- Suppose we knew the source and target would be word-by-word translated
- In that case, we could look at the corresponding input word when translating — might improve handling of long sentences!
- How can we achieve this without hardcoding it?



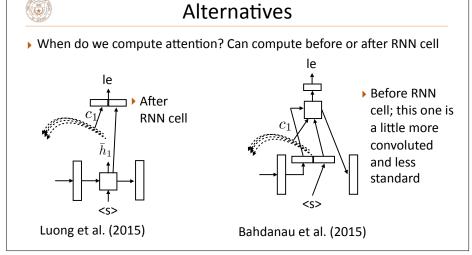


Attention Mechanism



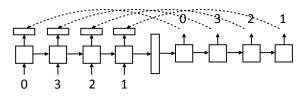


Luong et al. (2015)



What can attention do?

▶ Learning to copy — how might this work?

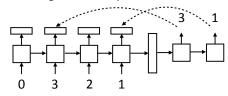


- LSTM can learn to count with the right weight matrix
- ▶ This is a kind of position-based addressing

Luong et al. (2015)

What can attention do?

Learning to subsample tokens

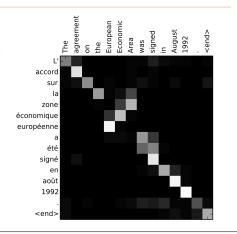


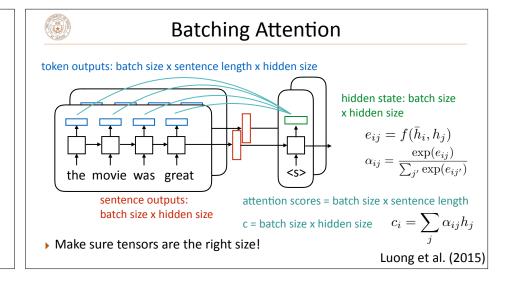
- Need to count (for ordering) and also determine which tokens are in/ out
- ▶ Content-based addressing

Luong et al. (2015)

Attention

- Encoder hidden states capture contextual source word identity
- Decoder hidden states are now mostly responsible for selecting what to attend to
- Doesn't take a complex hidden state to walk monotonically through a sentence and spit out word-by-word translations





Results

- ▶ Machine translation: BLEU score of 14.0 on English-German -> 16.8 with attention, 19.0 with smarter attention (we'll come back to this later)
- ▶ Summarization/headline generation: bigram recall from 11% -> 15%
- ▶ Semantic parsing: ~30-50% accuracy -> 70+% accuracy on Geoquery

Luong et al. (2015) Chopra et al. (2016) Jia and Liang (2016)

Takeaways

- Rather than combining syntax and semantics like in CCG, we can either parse to semantic representations directly or generate them with seq2seq models
- ▶ Seq2seq models are a very flexible framework, some weaknesses can potentially be patched with more data
- ▶ How to fix their shortcomings? Next time: attention, copying, and transformers