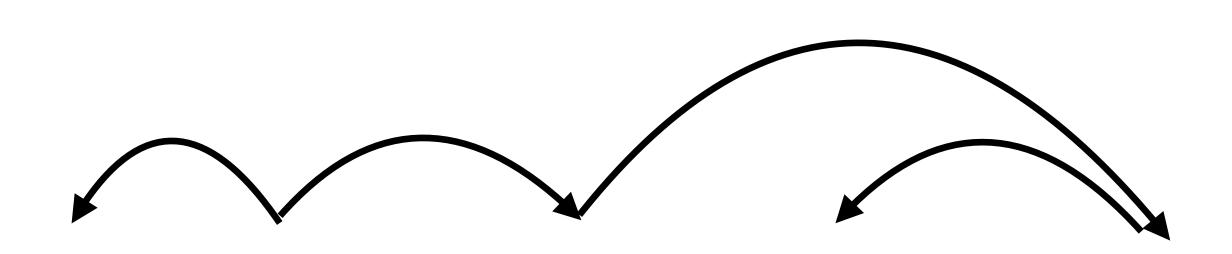
CS388: Natural Language Processing

Lecture 12:
Dependency
Parsing



Greg Durrett

Administrivia

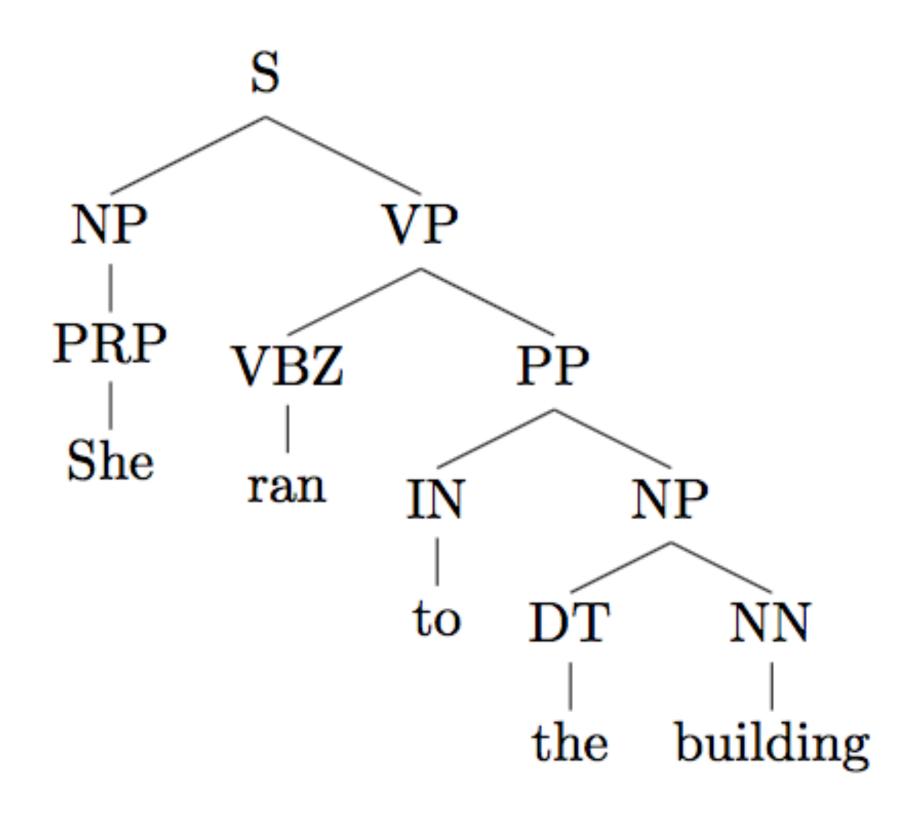
Project 1 graded

Submission on Gradescope

Final project proposals due next Thursday

Recall: Constituency

- Tree-structured syntactic analyses of sentences
- Nonterminals (NP, VP, etc.) as well as POS tags (bottom layer)
- Structured is defined by a CFG



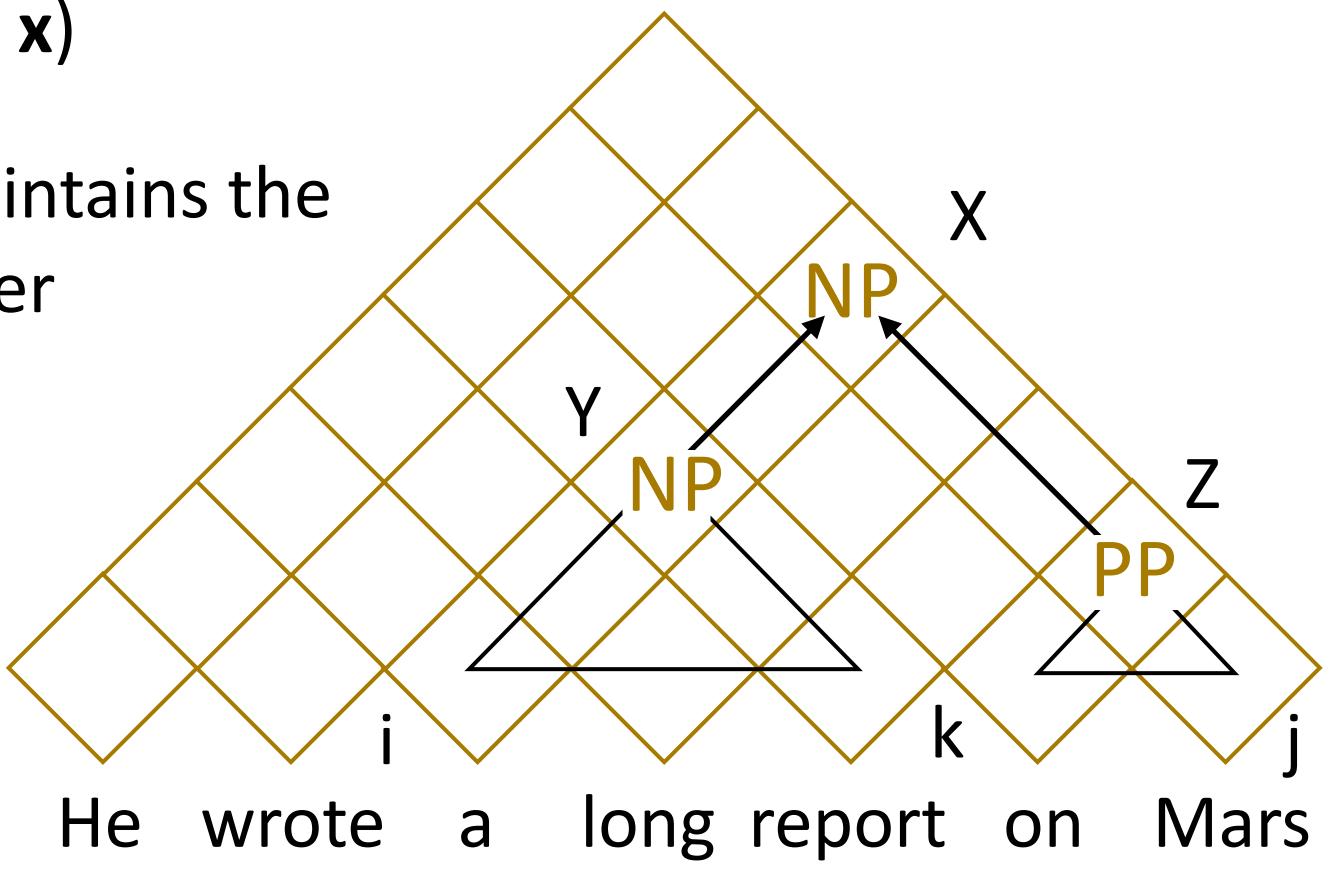
Recall: PCFGs

Gran	nmar (CFG)	Lexicon				
ROOT → S	1.0 NP \rightarrow NP PP	0.3	NN → interest	1.0		
S → NP VP	1.0 VP \rightarrow VBP NP	0.7	NNS → raises	1.0		
NP → DT NN	$0.2 \text{ VP} \rightarrow \text{VBP NP PP}$	0.3	VBP → interest	1.0		
NP → NN NNS	0.5 PP → IN NP	1.0	VBZ → raises	1.0		

- Context-free grammar: symbols which rewrite as one or more symbols
- Lexicon consists of "preterminals" (POS tags) rewriting as terminals (words)
- ► CFG is a tuple (N, T, S, R): N = nonterminals, T = terminals, S = start symbol (generally a special ROOT symbol), R = rules
- ▶ PCFG: probabilities associated with rewrites, normalize by source symbol

Recall: CKY

- Find argmax $P(T|\mathbf{x}) = \operatorname{argmax} P(T,\mathbf{x})$
- Dynamic programming: chart maintains the best way of building symbol X over span (i, j)
- Loop over all split points k, apply rules X -> Y Z to build X in every possible way



Outline

Dependency representation, contrast with constituency

Graph-based dependency parsers

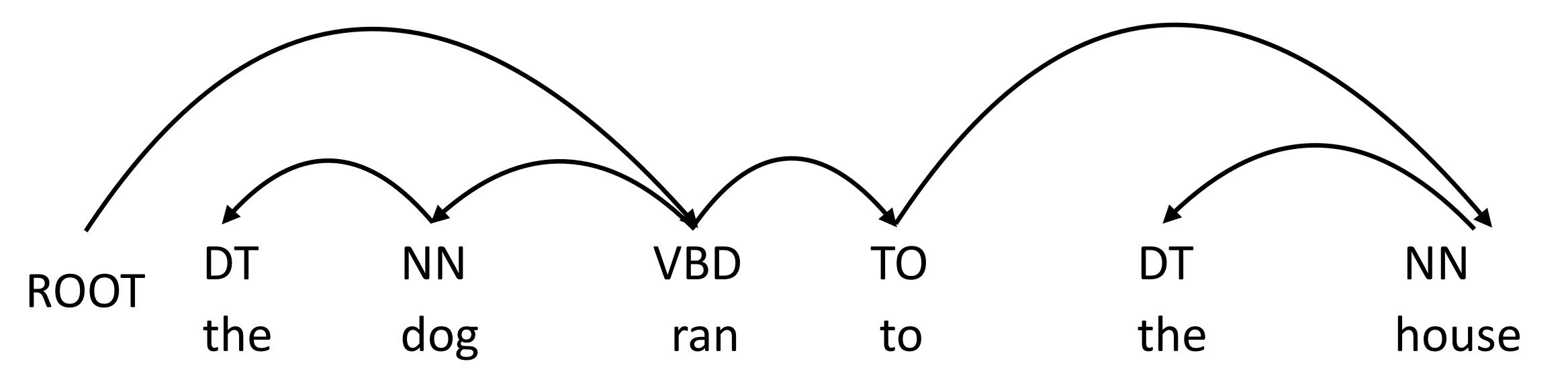
Transition-based (shift-reduce) dependency parsers

State-of-the-art parsers

Dependency Representation

Dependency Parsing

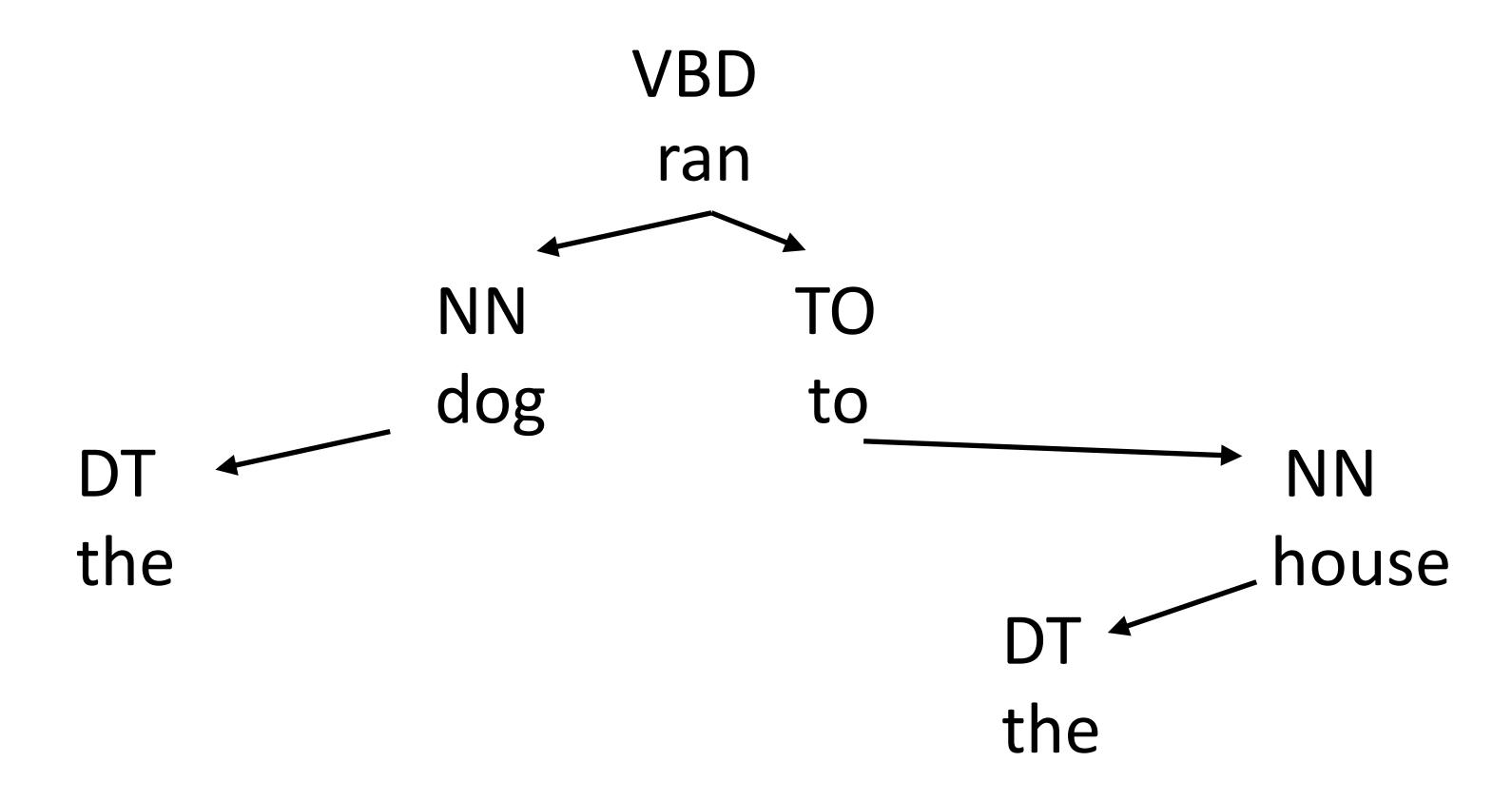
- Dependency syntax: syntactic structure is defined by these arcs
 - Head (parent, governor) connected to dependent (child, modifier)
 - ▶ Each word has exactly one parent except for the ROOT symbol, dependencies must form a directed acyclic graph



▶ POS tags same as before, usually run a tagger first as preprocessing

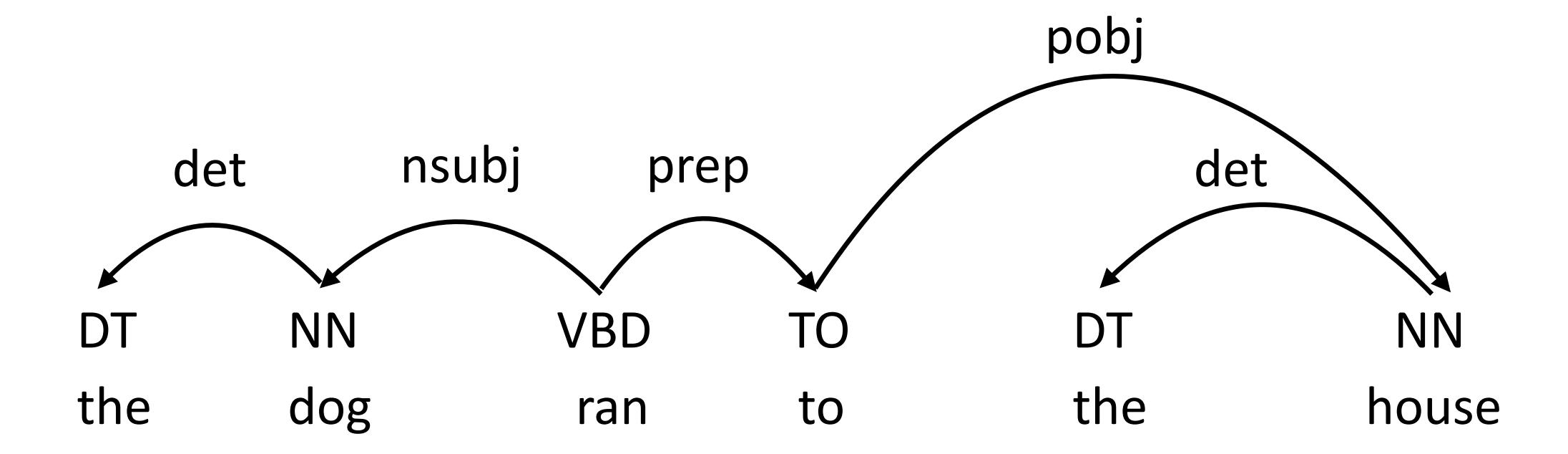
Dependency Parsing

Still a notion of hierarchy! Subtrees often align with constituents



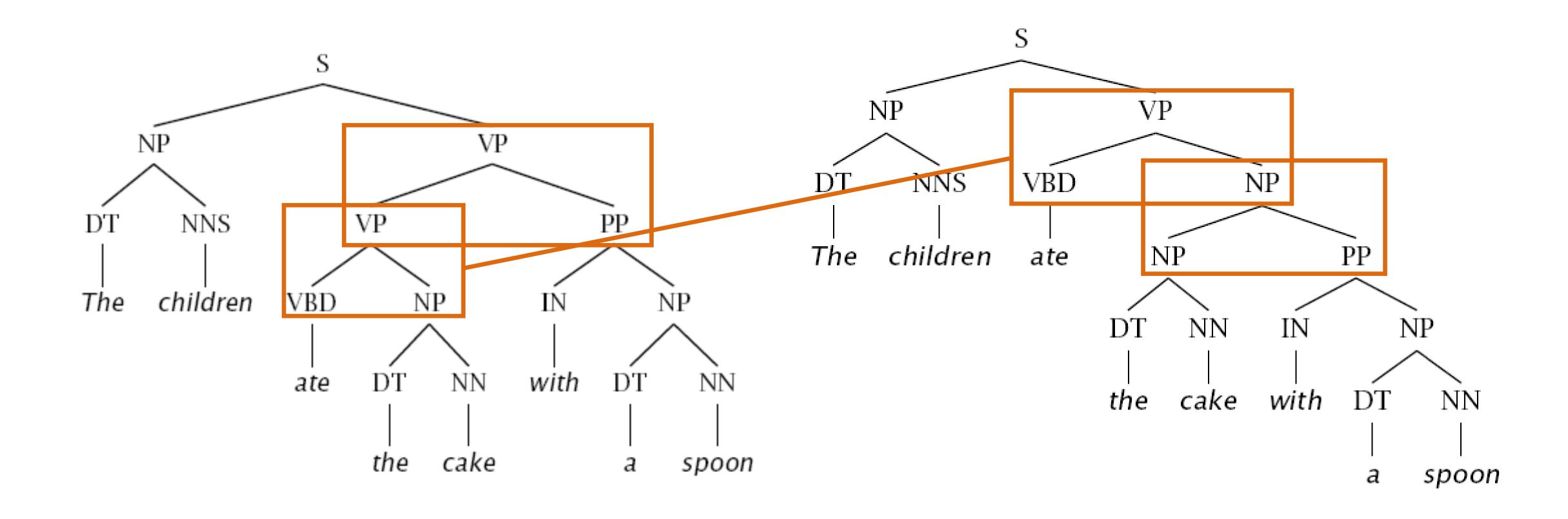
Dependency Parsing

- Can label dependencies according to syntactic function
- Major source of ambiguity is in the structure, so we focus on that more (labeling separately with a classifier works pretty well)



Dependency vs. Constituency: PP Attachment

Constituency: several rule productions need to change



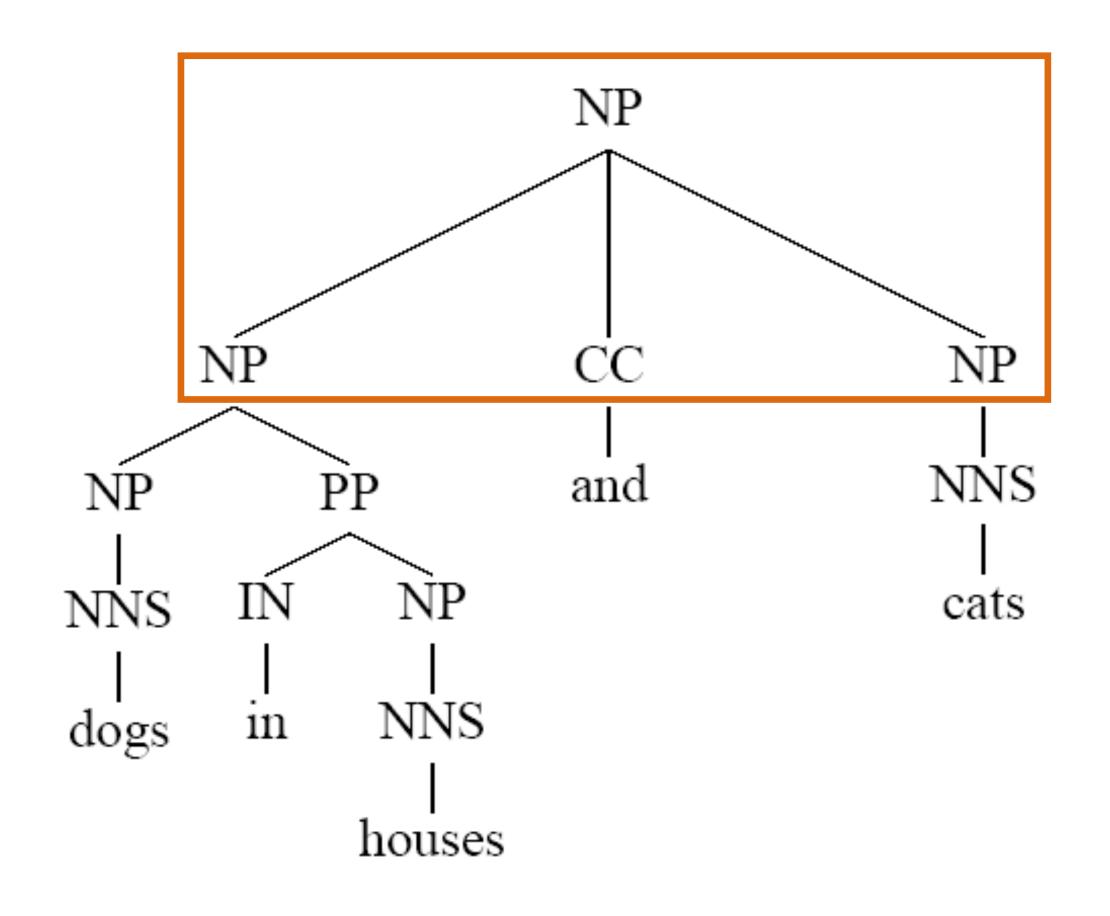
Dependency vs. Constituency: PP Attachment

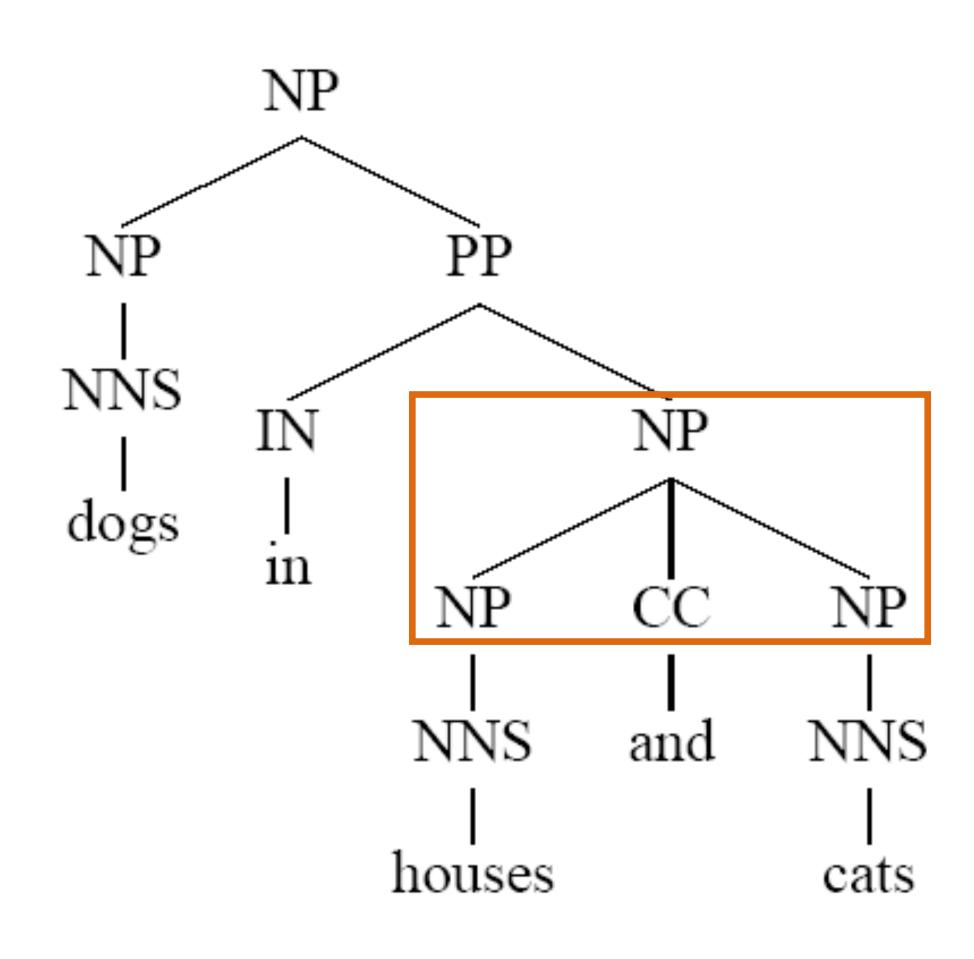
Dependency: one word (with) assigned a different parent

- More predicate-argument focused view of syntax
- "What's the main verb of the sentence? What is its subject and object?"
 - easier to answer under dependency parsing

Dependency vs. Constituency: Coordination

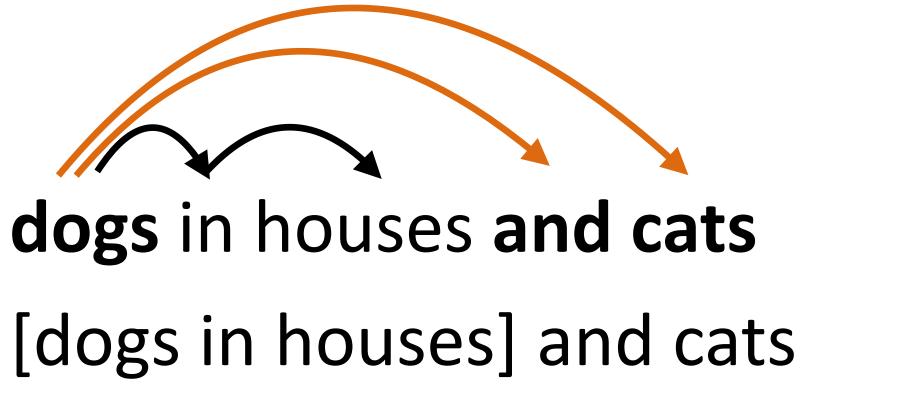
Constituency: ternary rule NP -> NP CC NP





Dependency vs. Constituency: Coordination

Dependency: first item is the head



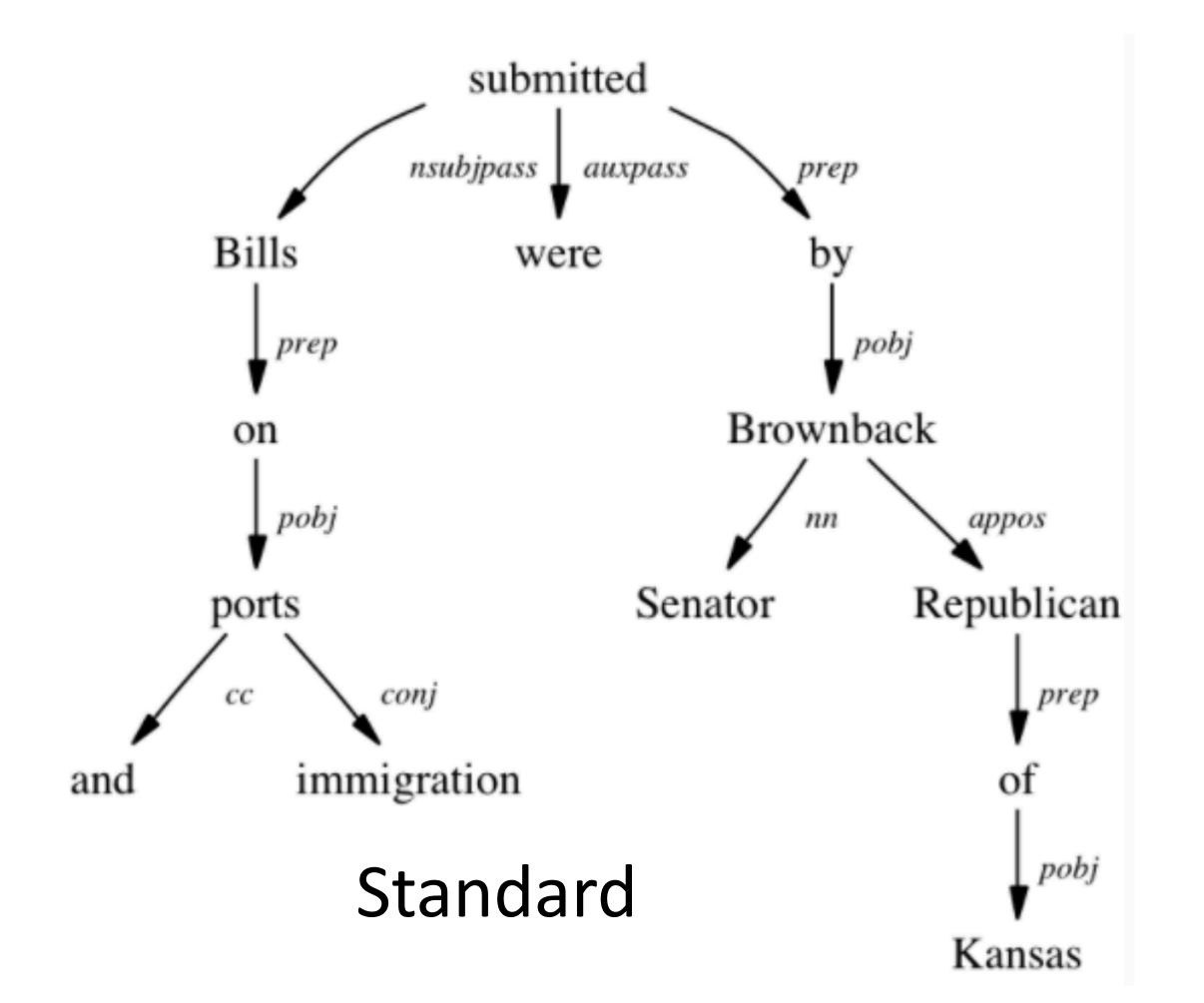


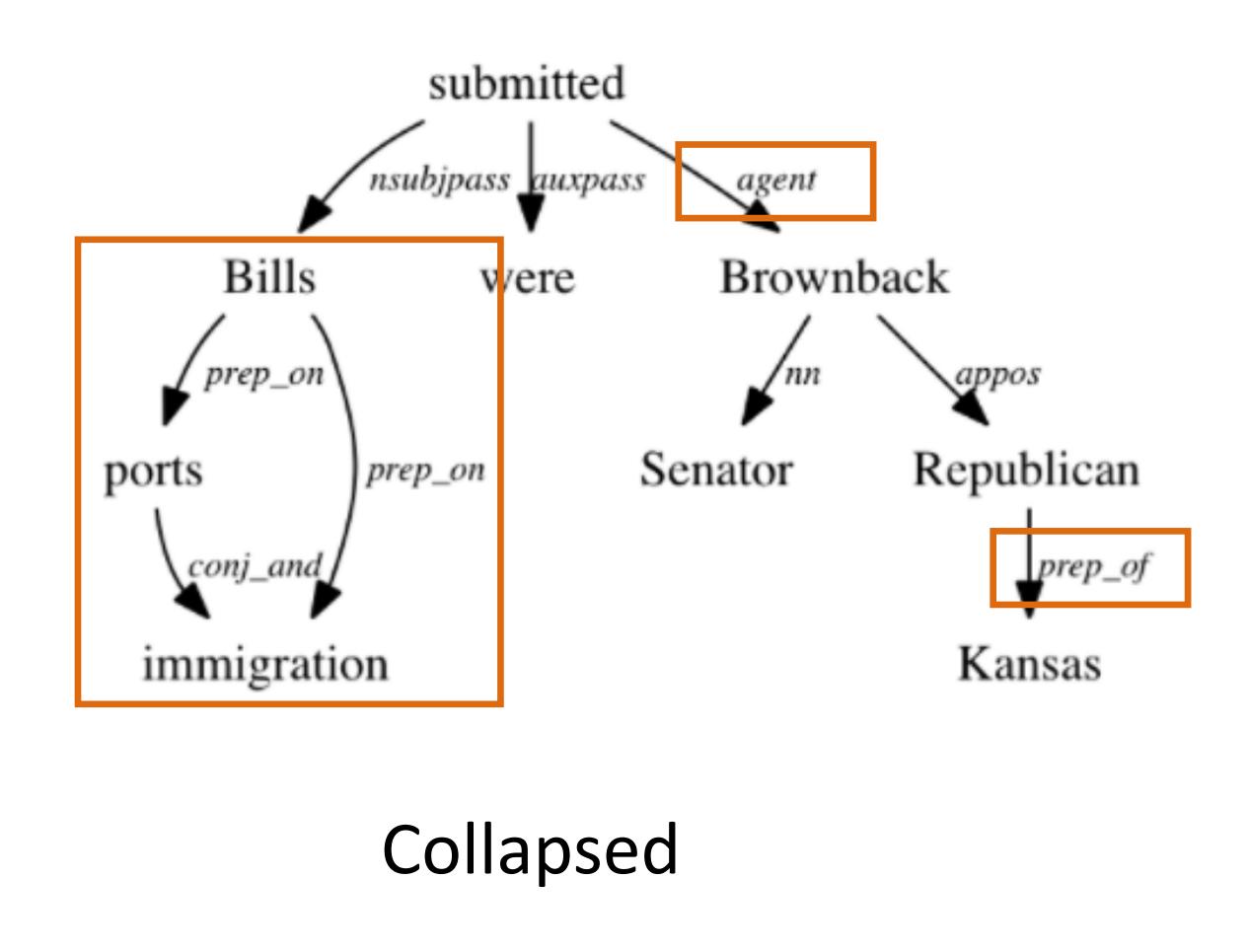
- Coordination is decomposed across a few arcs as opposed to being a single rule production as in constituency
- Can also choose and to be the head
- In both cases, headword doesn't really represent the phrase constituency representation makes more sense

Stanford Dependencies

Designed to be practically useful for relation extraction

Bills on ports and immigration were submitted by Senator Brownback, Republican of Kansas



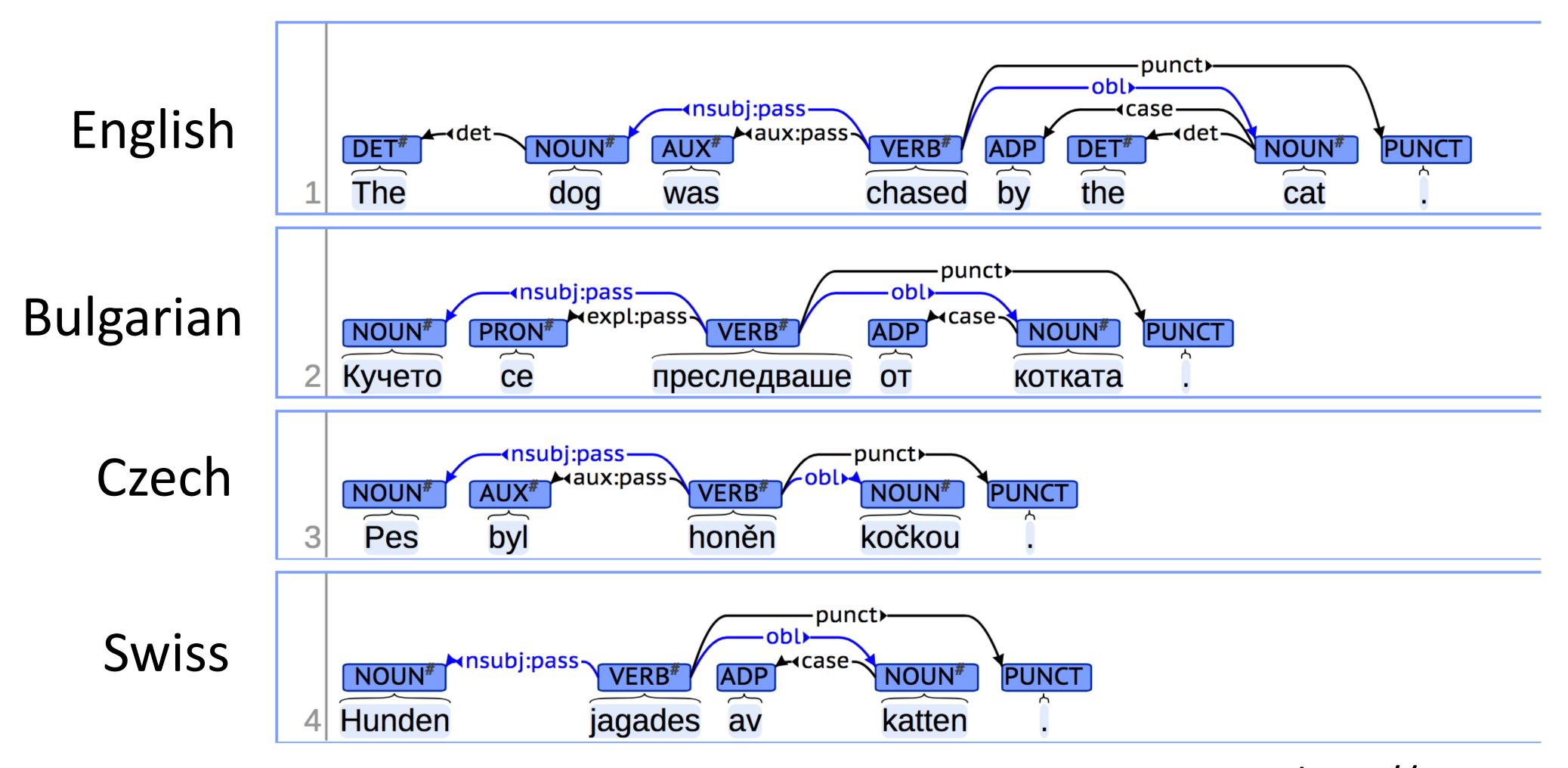


Dependency vs. Constituency

- Dependency is often more useful in practice (models predicate argument structure)
- Slightly different representational choices:
 - PP attachment is better modeled under dependency
 - Coordination is better modeled under constituency
- Dependency parsers are easier to build: no "grammar engineering", no unaries, easier to get structured discriminative models working well
- Dependency parsers are usually faster
- Dependencies are more universal cross-lingually

Universal Dependencies

Annotate dependencies with the same representation in many languages



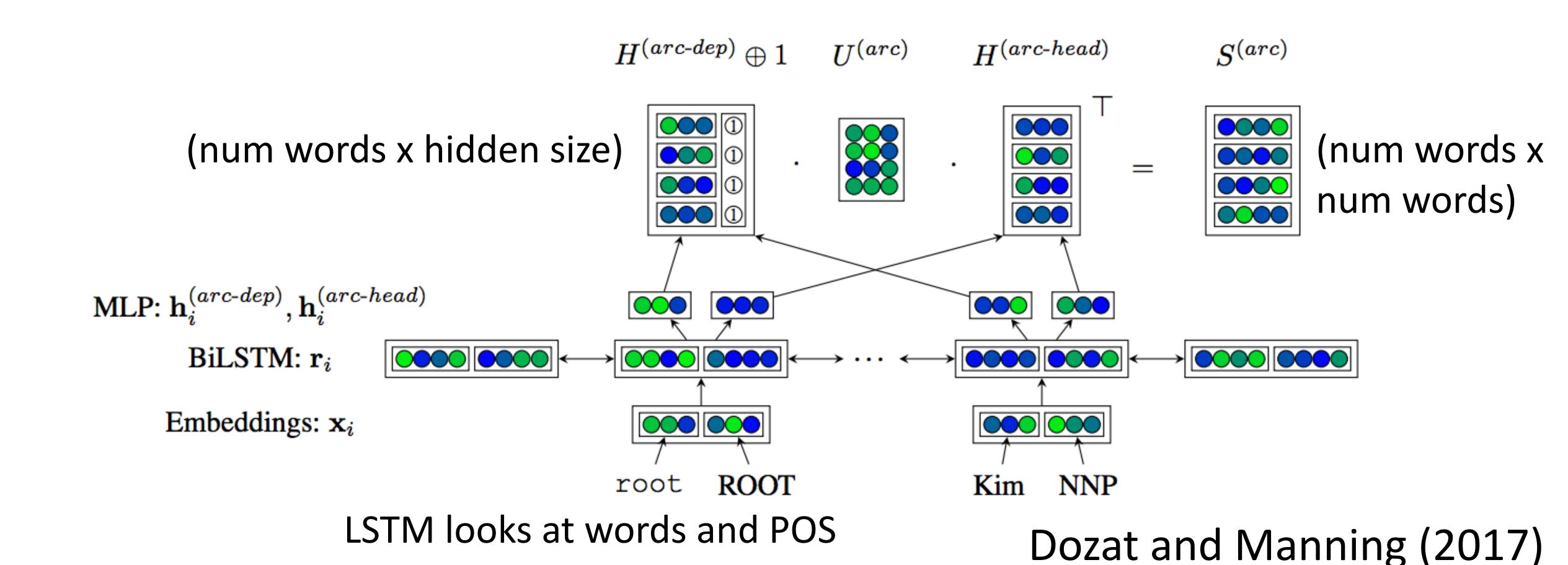
Graph-Based Parsing

Defining Dependency Graphs

- Words in sentence x, tree T is a collection of directed edges (parent(i), i) for each word i
 - Parsing = identify parent(i) for each word
 - ▶ Each word has exactly one parent. Edges must form a projective tree
- Log-linear CRF (discriminative): $P(T|\mathbf{x}) = \exp\left(\sum_i w^{\top} f(i, \mathrm{parent}(i), \mathbf{x})\right)$
- Example of a feature = I[head=to & modifier=house]

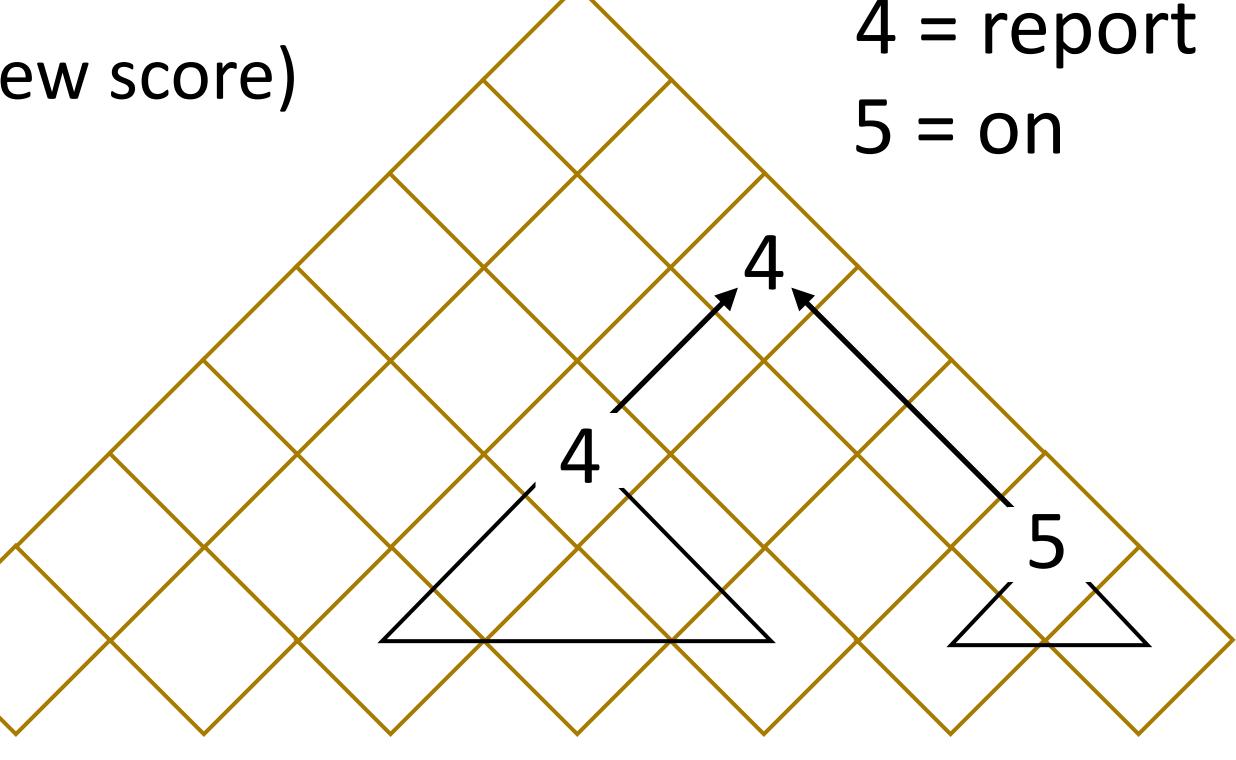
Biaffine Neural Parsing

Neural CRFs for dependency parsing: let c = LSTM embedding of i, p = LSTM embedding of parent(i). $score(i, parent(i), \mathbf{x}) = p^TUc$



Generalizing CKY

- ▶ DP chart with three dimensions: start, end, and head, start <= head < end
- new score = chart(2, 5, 4) + chart(5, 7, 5) + edge score(4 -> 5)
- score(2, 7, 4) = max(score(2, 7, 4), new score)
- Many spurious derivations: can build the same tree in many ways...need a better algorithm
- Eisner's algorithm is cubic time



wrote a long report on Mars

2

.

5

Evaluating Dependency Parsing

- ▶ UAS: unlabeled attachment score. Accuracy of choosing each word's parent (n decisions per sentence)
- LAS: additionally consider label for each edge
- ▶ Log-linear CRF parser, decoding with Eisner algorithm: 91 UAS
- ► Higher-order features from Koo parser: 93 UAS
- ▶ Best English results with neural CRFs (Dozat and Manning): 95-96 UAS

- Similar to deterministic parsers for compilers
 - Also called transition-based parsing
- A tree is built from a sequence of incremental decisions moving left to right through the sentence
- Stack containing partially-built tree, buffer containing rest of sentence
- Shifts consume the buffer, reduces build a tree on the stack

ROOT

I ate some spaghetti bolognese

- Initial state: Stack: [ROOT] Buffer: [I ate some spaghetti bolognese]
- Shift: top of buffer -> top of stack
 - ▶ Shift 1: Stack: [ROOT I] Buffer: [ate some spaghetti bolognese]
 - ▶ Shift 2: Stack: [ROOT I ate] Buffer: [some spaghetti bolognese]

ROOT I ate some spaghetti bolognese

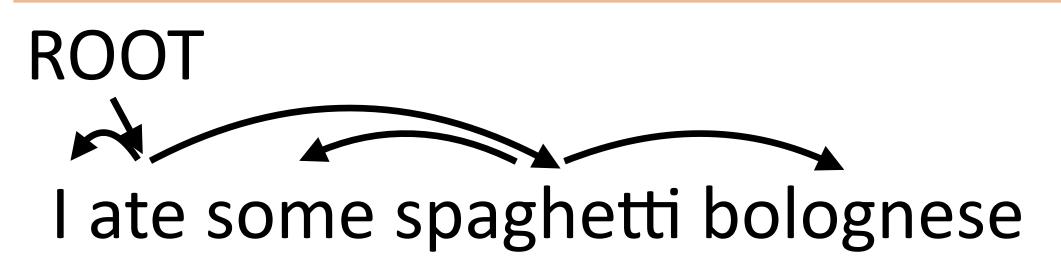
- ▶ State: Stack: [ROOT | ate] Buffer: [some spaghetti bolognese]
- Left-arc (reduce): Let σ denote the stack, $\sigma|w_{-1}$ = stack ending in w₋₁
 - "Pop two elements, add an arc, put them back on the stack"

$$\sigma|w_{-2},w_{-1}
ightarrow \sigma|w_{-1}$$
 w_{-2} is now a child of w_{-1}

▶ State: Stack: [ROOT ate] Buffer: [some spaghetti bolognese]

ROOT I ate some spaghetti bolognese

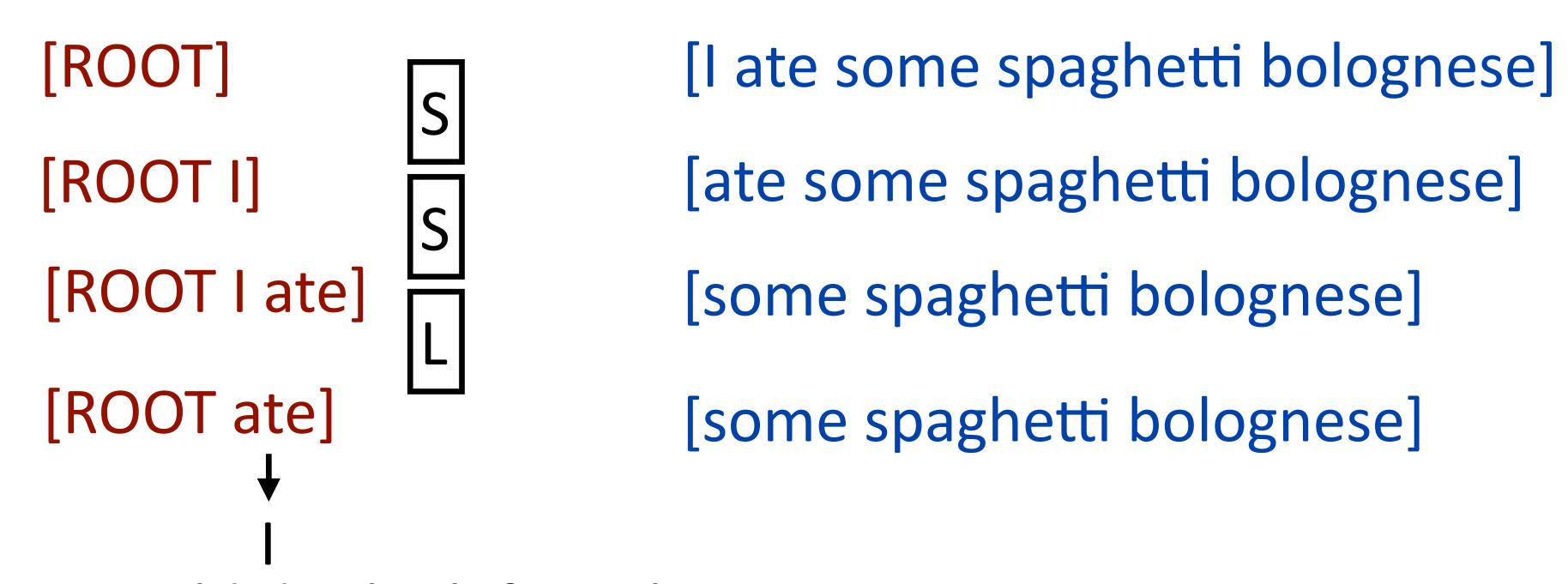
- ▶ Start: stack contains [ROOT], buffer contains [I ate some spaghetti bolognese]
- Arc-standard system: three operations
 - Shift: top of buffer -> top of stack
 - Left-Arc: $\sigma|w_{-2},w_{-1}
 ightarrow \sigma|w_{-1}$, w_{-2} is now a child of w_{-1}
 - Right-Arc $|\sigma|w_{-2},w_{-1}| o|\sigma|w_{-2}$, w_{-1} is now a child of w_{-2}
- ▶ End: stack contains [ROOT], buffer is empty []
- ▶ How many transitions do we need if we have n words in a sentence?



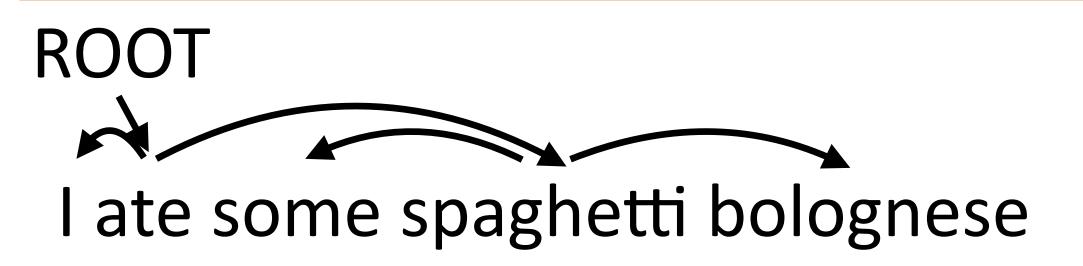
S top of buffer -> top of stack

LA pop two, left arc between them

RA pop two, right arc between them



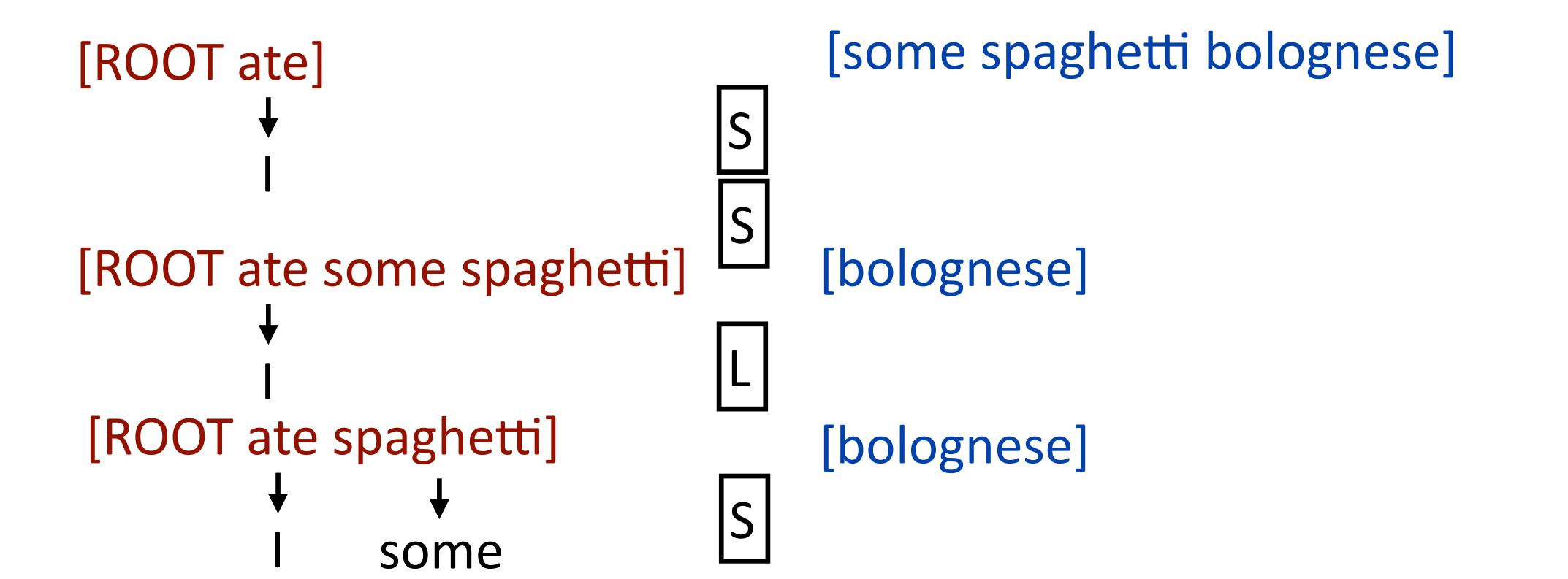
- Could do the left arc later! But no reason to wait
- Can't attach ROOT <- ate yet even though this is a correct dependency!</p>

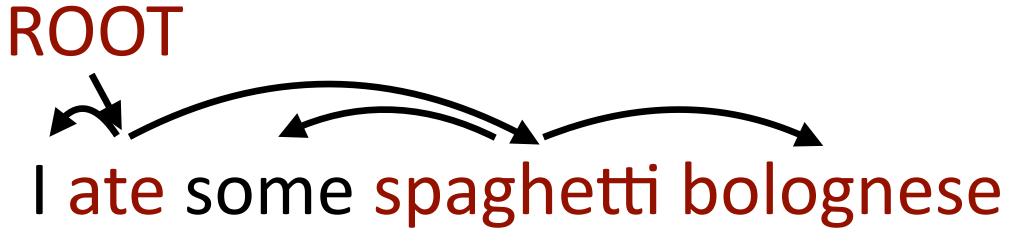


S top of buffer -> top of stack

LA pop two, left arc between them

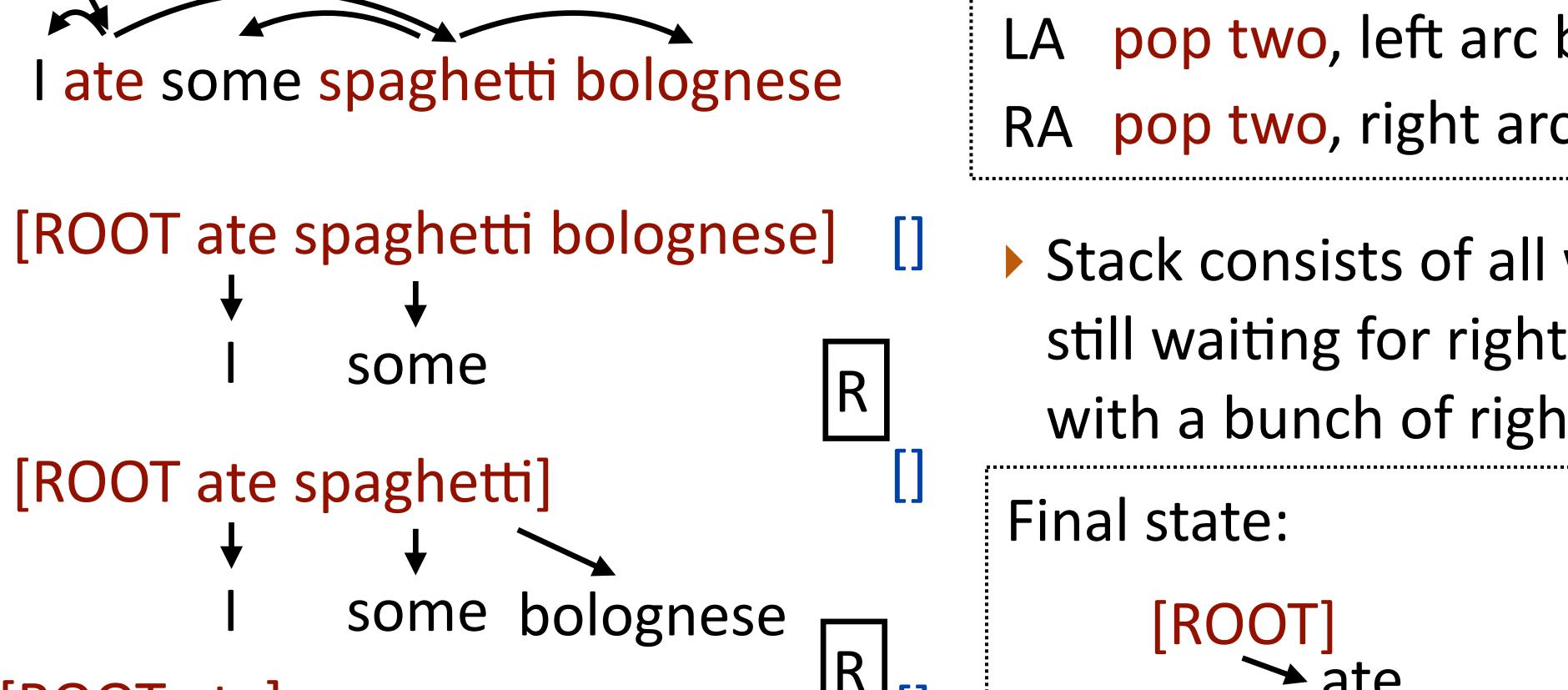
RA pop two, right arc between them





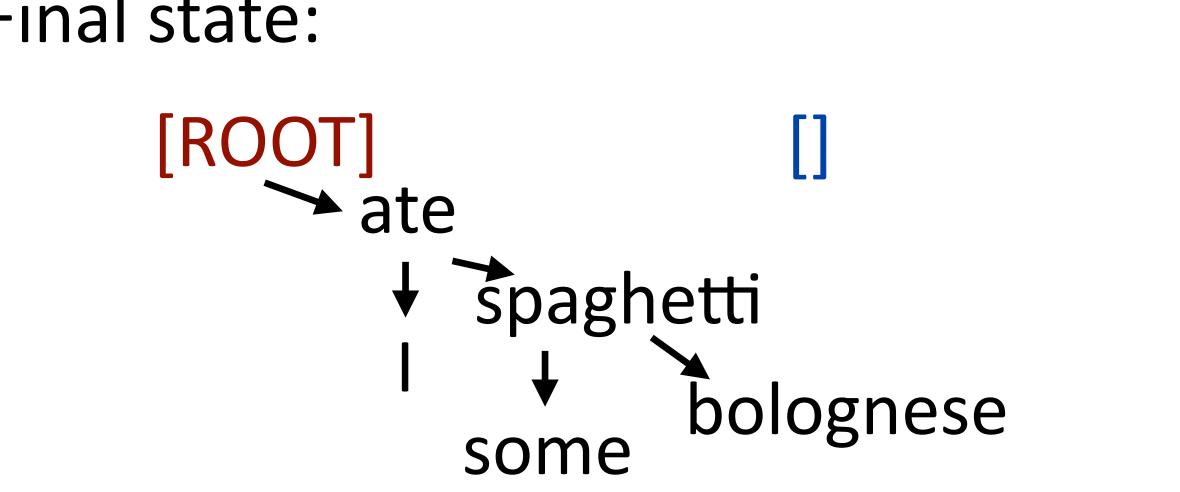
spaghetti

bolognese



top of buffer -> top of stack pop two, left arc between them RA pop two, right arc between them

Stack consists of all words that are still waiting for right children, end with a bunch of right-arc ops



Building Shift-Reduce Parsers

[ROOT]

[I ate some spaghetti bolognese]

- How do we make the right decision in this case?
- Only one legal move (shift)

```
[ROOT ate some spaghetti] [bolognese]

↓

I
```

- ▶ How do we make the right decision in this case? (all three actions legal)
- Multi-way classification problem: shift, left-arc, or right-arc?

```
\operatorname{argmax}_{a \in \{S, LA, RA\}} w^{\top} f(\operatorname{stack}, \operatorname{buffer}, a)
```


Features for Shift-Reduce Parsing

```
[ROOT ate some spaghetti] [bolognese]
↓
```

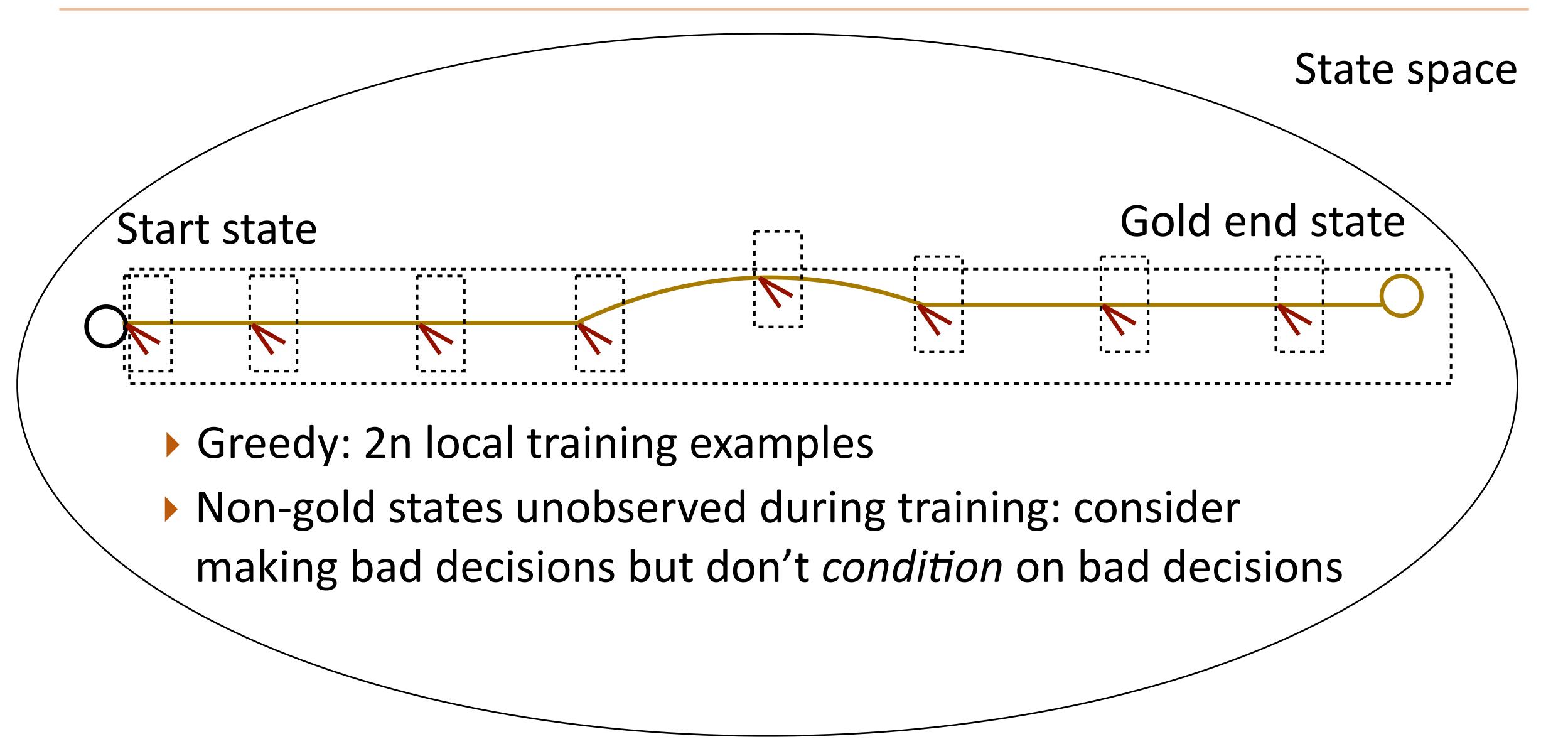
- ▶ Features to know this should left-arc?
- One of the harder feature design tasks!
- In this case: the stack tag sequence VBD DT NN is pretty informative
 - looks like a verb taking a direct object which has a determiner in it
- ▶ Things to look at: top words/POS of buffer, top words/POS of stack, leftmost and rightmost children of top items on the stack

Training a Greedy Model

```
[ROOT ate some spaghetti] [bolognese]
\downarrow
1
argmax_{a \in \{S, LA, RA\}} w^{\top} f(stack, buffer, a)
```

- Can turn a tree into a decision sequence a by building an oracle
- ▶ Train a classifier to predict the right decision using these as training data
- Training data assumes you made correct decisions up to this point and teaches you to make the correct decision, but what if you screwed up...

Greedy training



Speed Tradeoffs

	Parser	Dev		Test		Speed
	Paisei	UAS	LAS	UAS	LAS	(sent/s)
Unoptimized S-R	standard	89.9	88.7	89.7	88.3	51
Onopunized 5-h	eager	90.3	89.2	89.9	88.6	63
Optimized S-R	Malt:sp	90.0	88.8	89.9	88.5	560
Optimized 3-N	Malt:eager	90.1	88.9	90.1	88.7	535
Graph-based {	MSTParser	92.1	90.8	92.0	90.5	12
Neural S-R	Our parser	92.2	91.0	92.0	90.7	1013

- ▶ Many early-2000s constituency parsers were ~5 sentences/sec
- Using S-R used to mean taking a performance hit compared to graph-based, that's no longer (quite as) true
 Chen and Manning (2014)

State-of-the-art Dependency Parsers

Dependency Parsers

- ▶ 2005: Eisner algorithm graph-based parser was SOTA (~91 UAS)
- ▶ 2010: Koo's 3rd-order parser was SOTA for graph-based (~93 UAS)
- ▶ 2012: Maltparser was SOTA was for transition-based (~90 UAS)
- 2014: Chen and Manning got 92 UAS with transition-based neural model
- ▶ 2016: Improvements to Chen and Manning

Shift-Reduce with FFNNs

He_PRP

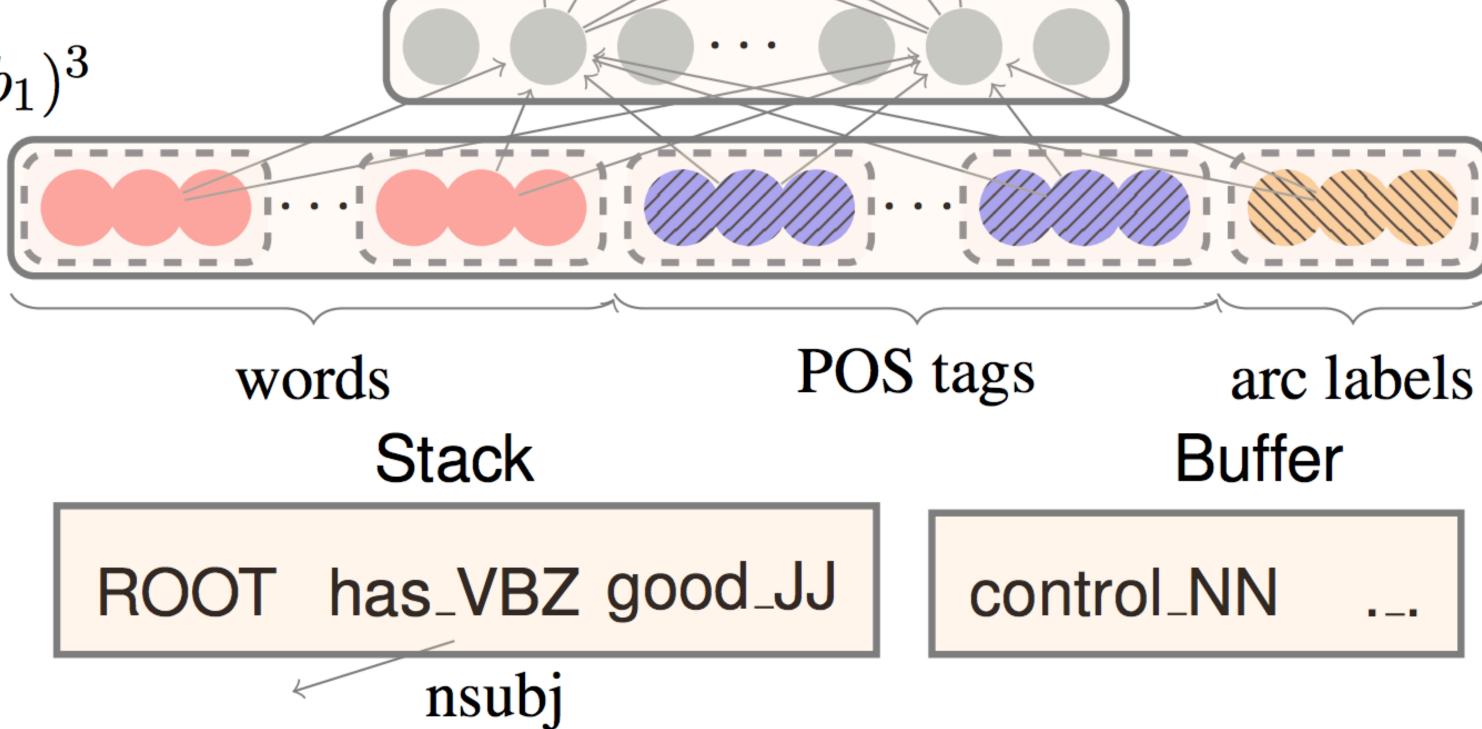
Softmax layer:

$$p = softmax(W_2h)$$

Hidden layer:

$$h = (W_1^w x^w + W_1^t x^t + W_1^l x^l + b_1)^3$$

Input layer: $[x^w, x^t, x^l]$



Configuration

Chen and Manning (2014)

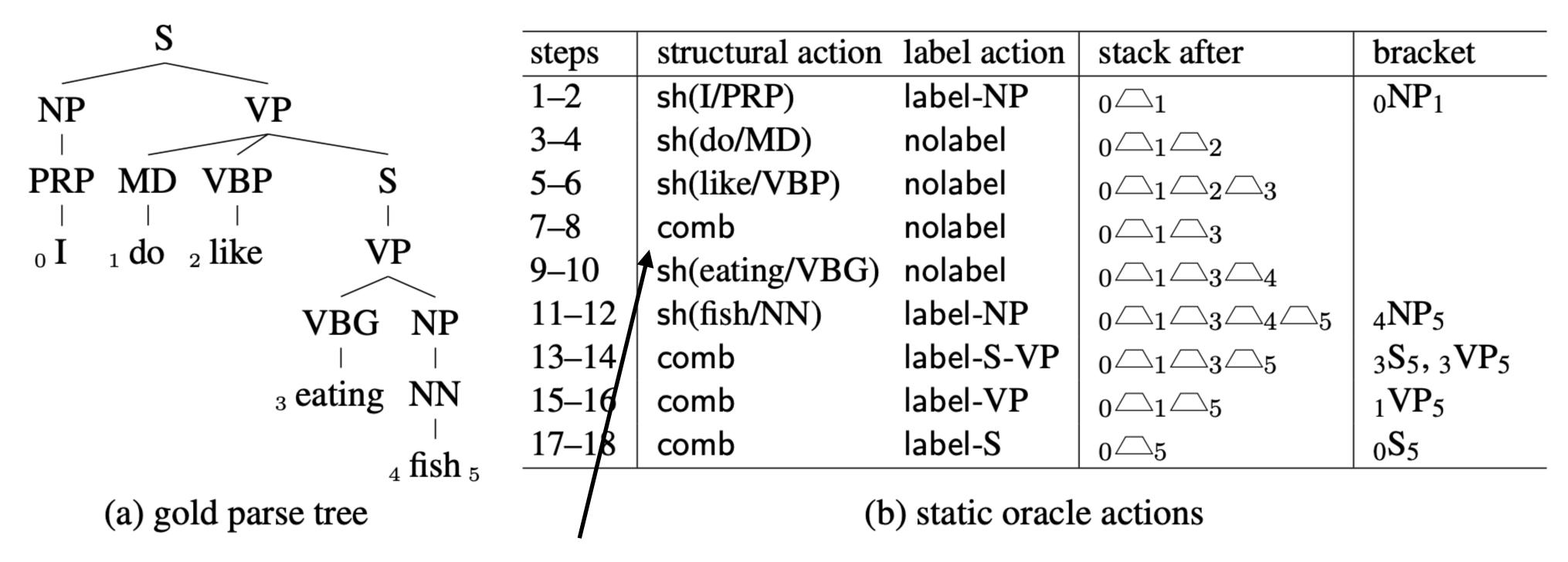
Parsey McParseFace (a.k.a. SyntaxNet)

- ▶ 94.61 UAS on the Penn Treebank using a global transition-based system with early updating (compared to 95.8 for Dozat, 93.7 for Koo in 2009)
 - Additional data harvested via "tri-training", form of self-training

▶ Feedforward neural nets looking at words and POS associated with words in the stack / those words' children / words in the buffer

Feature set pioneered by Chen and Manning (2014), Google fine-tuned it

Shift-Reduce Constituency

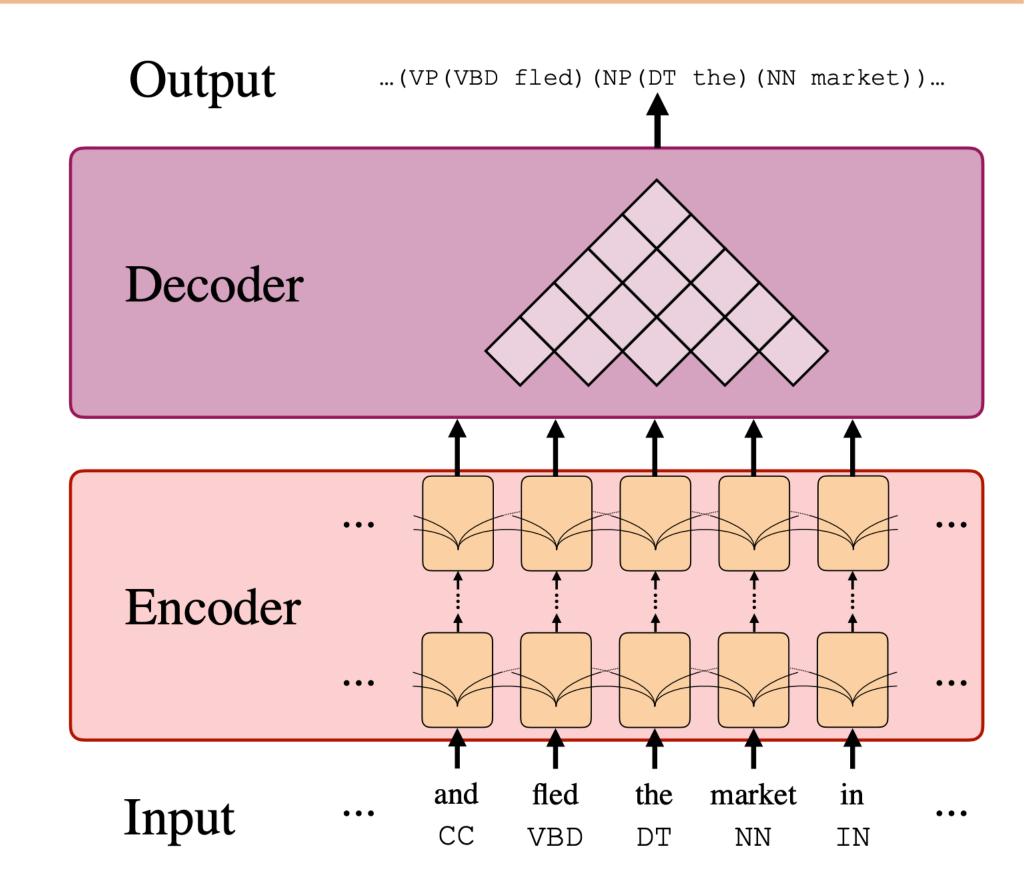


combine with no label for ternary rules

Can do shift-reduce for constituency as well, reduce operation builds constituents

Pre-trained Models

- Improves the neural CRF by using a transformer layer (self-attentive), character-level modeling, and ELMo
- ▶ 95.21 on Penn Treebank dev set much better than past parsers! (~92-93)
- This constituency parser with BERT is one of the strongest today, or use a transition-based version due to Kitaev and Klein (2020)



Recap

Shift-reduce parsing can work nearly as well as graph-based

Arc-standard system for transition-based parsing

Purely greedy or more "global" approaches

Next time: semantic parsing