
CS388:	Natural	Language	Processing

Greg	Durre8

Lecture	11:	Syntax	I

Some	slides	adapted	from	Dan	Klein,	UC	Berkeley

credit:	Imgflip

Administrivia

‣Mini	2	due	today

‣ Project	1	back	soon

‣ Final	project	spec	posted

‣ Done	in	pairs	or	alone

‣ Topic:	see	spec	for	suggesOons

‣ Proposals	due	before	spring	break,	in-class	presentaOons	at	the	end	of	
the	semester,	final	report	due	later

This	Lecture

‣ ConsOtuency	formalism

‣ Context-free	grammars	and	the	CKY	algorithm

‣ Refining	grammars

‣ Dependency	grammar

ConsOtuency

Syntax

‣ Study	of	word	order	and	how	words	form	sentences

‣Why	do	we	care	about	syntax?

‣ Recognize	verb-argument	structures	(who	is	doing	what	to	whom?)

‣MulOple	interpretaOons	of	words	(noun	or	verb?)

‣ Higher	level	of	abstracOon	beyond	words:	some	languages	are	SVO,	
some	are	VSO,	some	are	SOV,	parsing	can	canonicalize

ConsOtuency	Parsing

‣ Tree-structured	syntacOc	analyses	of	sentences

‣ Common	things:	noun	phrases,	
verb	phrases,	preposiOonal	phrases

‣ Bo8om	layer	is	POS	tags

‣ Examples	will	be	in	English.	ConsOtuency	
makes	sense	for	a	lot	of	languages	but	
not	all

sentenOal	complement

whole	embedded	sentence

adverbial	phrase

ConsOtuency	Parsing

The	rat	the	cat	chased	squeaked

I	raced	to	Indianapolis	,	unimpeded	by	traffic

Challenges

‣ PP	a8achment

§  If	we	do	no	annota+on,	these	trees	differ	only	in	one	rule:	
§  VP	→	VP	PP	
§  NP	→	NP	PP	

§  Parse	will	go	one	way	or	the	other,	regardless	of	words	
§  Lexicaliza+on	allows	us	to	be	sensi+ve	to	specific	words	

same	parse	as	“the	cake	with	some	icing”

Challenges

‣ NP	internal	structure:	tags	+	depth	of	analysis

ConsOtuency
‣ How	do	we	know	what	the	consOtuents	are?

‣ ConsOtuency	tests:
‣ SubsOtuOon	by	proform	(e.g.,	pronoun)

‣ Cleeing	(It	was	with	a	spoon	that…)

‣ Answer	ellipsis	(What	did	they	eat?	the	cake)	
																											(How?	with	a	spoon)

‣ SomeOmes	consOtuency	is	not	clear,	e.g.,	coordinaOon:	she	went	to	and	
bought	food	at	the	store

Context-Free	Grammars,	CKY

CFGs	and	PCFGs§  Write	symbolic	or	logical	rules:	

§  Use	deduc4on	systems	to	prove	parses	from	words	
§  Minimal	grammar	on	“Fed	raises”	sentence:	36	parses	
§  Simple	10-rule	grammar:	592	parses	
§  Real-size	grammar:	many	millions	of	parses	

§  This	scaled	very	badly,	didn’t	yield	broad-coverage	tools	

Grammar (CFG) Lexicon

ROOT → S

S → NP VP

NP → DT NN

NP → NN NNS

NN → interest

NNS → raises

VBP → interest

VBZ → raises

…

NP → NP PP

VP → VBP NP

VP → VBP NP PP

PP → IN NP

‣ Context-free	grammar:	symbols	which	rewrite	as	one	or	more	symbols

‣ Lexicon	consists	of	“preterminals”	(POS	tags)	rewriOng	as	terminals	(words)

‣ CFG	is	a	tuple	(N,	T,	S,	R):	N	=	nonterminals,	T	=	terminals,	S	=	start	
symbol	(generally	a	special	ROOT	symbol),	R	=	rules

‣ PCFG:	probabiliOes	associated	with	rewrites,	normalize	by	source	symbol

0.2
0.5

0.3
0.7
0.3
1.0

1.0
1.0

1.0
1.0
1.0
1.0

EsOmaOng	PCFGs

‣Maximum	likelihood	PCFG	for	a	set	of	
labeled	trees:	count	and	normalize!	
Same	as	HMMs	/	Naive	Bayes

S	→	NP	VP

NP	→	PRP

NP	→	DT	NN

…

1.0

0.5

0.5

‣ Tree	T	is	a	series	of	rule	applicaOons	r. P (T) =
Y

r2T

P (r|parent(r))

BinarizaOon
‣ To	parse	efficiently,	we	need	our	PCFGs	to	be	at	most	binary	(not	CNF)

VP

VBD NP PP PP

sold the	book to	her for	$3

P(VP	→	VBD	NP	PP	PP)	=	0.2

VP

VBD VP

NP

PP

VP

PP

VP

VBD VP-[NP	PP	PP]

NP

PP

VP-[PP	PP]

PP

‣ Lossless: ‣ Lossy:

P(VP	→	VBZ	PP)	=	0.1

…

CKY

He wrote a long report on Mars

NP
PP

NP

‣ Find	argmax	P(T|x)	=	argmax	P(T,	x)

‣ Dynamic	programming:	chart	maintains	the	
best	way	of	building	symbol	X	over	
span	(i,	j)

‣ CKY	=	Viterbi,	there	is	also	
an	algorithm	called	inside-
outside	=	forward-backward

Cocke-Kasami-Younger

i jk

X

Z
Y

CKY

‣ Chart:	T[i,j,X]	=	best	score	for	X	
over	(i,	j)

‣ Base:	T[i,i+1,X]	=	log	P(X	→	wi)

w1

‣ Recurrence:	
T[i,j,X]	=	max					max					T[i,k,X1]	+	T[k,j,X2]	+	log	P(X	→	X1	X2)

w2 w3 w4

T[i,j,X]
NP

VP S …

k r:	X	→	X1	X2

‣ RunOme:	O(n3G)		G	=	grammar	constant

‣ Loop	over	all	split	points	k,	
apply	rules	X	->	Y	Z	to	build	
X	in	every	possible	way

S[0,4]	=>	NP[0,2]	VP[2,4]

Unary	Rules

SBAR

S

the	rat	the	cat	chased	squeaked

NP

NNS
mice

‣ Unary	producOons	in	treebank	need	to	be	dealt	with	by	parsers

‣ Binary	trees	over	n	words	have	at	most	n-1	nodes,	but	you	can	have	
unlimited	numbers	of	nodes	with	unaries	(S	→	SBAR	→	NP	→	S	→	…)

‣ In	pracOce:	enforce	at	most	one	unary	over	each	span,	modify	CKY	
accordingly

Parser	EvaluaOon
S(0,3),	
NP(0,1),	
VP(1,3),	
NP(2,3),	
PRP(0,1),	
VBD(1,2),	
PRP(2,3)

S

NP

She saw it

NN PRPPRP

0									1										2							3

NP

S(0,3),	
NP(0,2),	
NP(2,3),	
PRP(0,1),	
NN(1,2),	
PRP(2,3)

‣ Precision:	number	of	correct	brackets	/	num	pred	brackets =	2/3

‣ Recall:	number	of	correct	brackets	/	num	of	gold	brackets =	2/4

‣ F1:	harmonic	mean	of	precision	and	recall	=	(1/2	*	((2/4)-1	+	(2/3)-1))-1

=	0.57

S

NP
VP

She saw it

VBD PRPPRP

0									1										2							3

NP

Results

Klein	and	Manning	(2003)

‣ Standard	dataset	for	English:	Penn	Treebank	(Marcus	et	al.,	1993)

‣ EvaluaOon:	F1	over	labeled	consOtuents	of	the	sentence

‣ Vanilla	PCFG:	~75	F1

‣ Best	PCFGs	for	English:	~90	F1

‣ Other	languages:	results	vary	widely	depending	on	annotaOon	+	
complexity	of	the	grammar

‣ SOTA	(discriminaOve	models):	95	F1

Refining	GeneraOve	Grammars

PCFG	Independence	AssumpOons

11%
9%

6%

NP PP DT NN PRP

9% 9%

21%

NP PP DT NN PRP

7%
4%

23%

NP PP DT NN PRP

All NPs NPs under S NPs under VP

‣ Language	is	not	context-free:	NPs	in	different	contexts	rewrite	differently

‣ Can	we	make	the	grammar	“less	context-free”?

VerOcal	MarkovizaOon

S^ROOT

NP^S VP^S

She saw it

VBD^VP PRP^VPPRP^NP

S

NP VP

She saw it

VBD PRPPRP

Basic	tree	(v	=	0) v	=	1	MarkovizaOon

‣Why	is	this	a	good	idea?

Horizontal	MarkovizaOon

VP

sold books to	her

NP PPVBZ PP

for	$50

VP

sold

books

to	her

NP

PP

VBZ

PP

for	$50

VP	[…	VBZ]

VP	[…	NP]

h	=	2:	VP	[…	VBZ	NP]

h	=	1:	VP	[…	NP]

h	=	0:	VP

h	=	2:	VP	[…	<s>	VBZ]

h	=	1:	VP	[…	VBZ]

h	=	0:	VP

‣ Changes	amount	of	context	remembered	
in	binarizaOon	process

Annotated	Tree

Klein	and	Manning	(2003)

‣ 75	F1	with	basic	PCFG	=>	86.3	F1	with	this	highly	customized	PCFG,	
including	other	tweaks	(SOTA	was	90	F1	at	the	Ome,	but	with	more	
complex	methods)

Lexicalized	Parsers

§  What’s	different	between	basic	PCFG	scores	here?	
§  What	(lexical)	correla;ons	need	to	be	scored?	

‣ Even	with	parent	annotaOon,	these	trees	have	the	same	rules.	Need	to	
use	the	words

Lexicalized	Parsers
§  Add	“head	words”	to	

each	phrasal	node	
§  Syntac4c	vs.	seman4c	

heads	
§  Headship	not	in	(most)	

treebanks	
§  Usually	use	head	rules,	

e.g.:	
§  NP:	

§  Take	leFmost	NP	
§  Take	rightmost	N*	
§  Take	rightmost	JJ	
§  Take	right	child	

§  VP:	
§  Take	leFmost	VB*	
§  Take	leFmost	VP	
§  Take	leF	child	

‣ Annotate	each	grammar	symbol	with	
its	“head	word”:	most	important	
word	of	that	consOtuent

‣ Rules	for	idenOfying	headwords	(e.g.,	
the	last	word	of	an	NP	before	a	
preposiOon	is	typically	the	head)

‣ Collins	and	Charniak	(late	90s):	
~89	F1	with	these

Dependency	Syntax

Lexicalized	Parsing

S(ran)

NP(dog)

VP(ran)

PP(to)

NP(house)

DT(the) NN(house)TO(to)VBD(ran)DT(the) NN(dog)
the housetoranthe dog

Dependency	Parsing

DT NNTOVBDDT NN
the housetoranthe dog

‣ Dependency	syntax:	syntacOc	structure	is	defined	by	these	arcs	
‣ Head	(parent,	governor)	connected	to	dependent	(child,	modifier)	
‣ Each	word	has	exactly	one	parent	except	for	the	ROOT	symbol,	
dependencies	must	form	a	directed	acyclic	graph

ROOT

‣ POS	tags	same	as	before,	usually	run	a	tagger	first	as	preprocessing

Dependency	Parsing

DT

NN

TO

VBD

DT

NN

the

house

to

ran

the

dog

‣ SOll	a	noOon	of	hierarchy!	Subtrees	oeen	align	with	consOtuents

Dependency	Parsing

DT NNTOVBDDT NN
the housetoranthe dog

‣ Can	label	dependencies	according	to	syntacOc	funcOon

det

‣Major	source	of	ambiguity	is	in	the	structure,	so	we	focus	on	that	more	
(labeling	separately	with	a	classifier	works	pre8y	well)

nsubj

pobj

detprep

Dependency	vs.	ConsOtuency:	PP	A8achment

‣ ConsOtuency:	several	rule	producOons	need	to	change

the	children	ate	the	cake	with	a	spoon

‣ Dependency:	one	word	(with)	assigned	a	different	parent

Dependency	vs.	ConsOtuency:	PP	A8achment

‣More	predicate-argument	focused	view	of	syntax

‣ “What’s	the	main	verb	of	the	sentence?	What	is	its	subject	and	object?”	
—	easier	to	answer	under	dependency	parsing

‣ ConsOtuency:	ternary	rule	NP	->	NP	CC	NP

Dependency	vs.	ConsOtuency:	CoordinaOon

dogs	in	houses	and	cats

‣ Dependency:	first	item	is	the	head

Dependency	vs.	ConsOtuency:	CoordinaOon

dogs	in	houses	and	cats

‣ CoordinaOon	is	decomposed	across	a	few	arcs	as	opposed	to	being	a	
single	rule	producOon	as	in	consOtuency

‣ Can	also	choose	and	to	be	the	head
‣ In	both	cases,	headword	doesn’t	really	represent	the	phrase	—	
consOtuency	representaOon	makes	more	sense

[dogs	in	houses]	and	cats dogs	in	[houses	and	cats]

Takeaways

‣ PCFGs	esOmated	generaOvely	can	perform	well	if	sufficiently	engineered

‣ Neural	CRFs	work	well	for	consOtuency	parsing

‣ Next	Ome:	revisit	lexicalized	parsing	as	dependency	parsing

