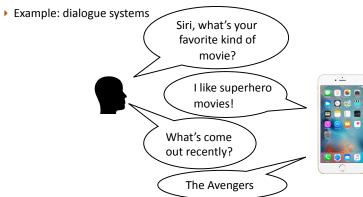
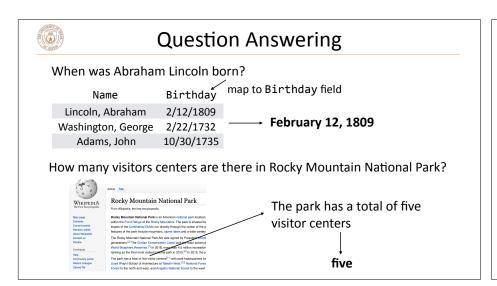
CS388: Natural Language Processing Lecture 1: Introduction

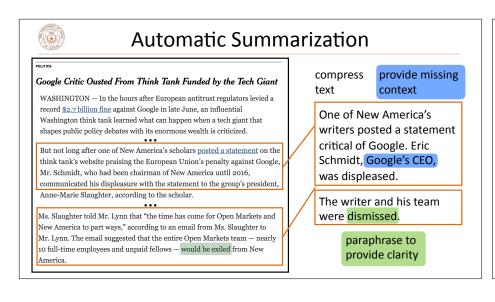
Greg Durrett

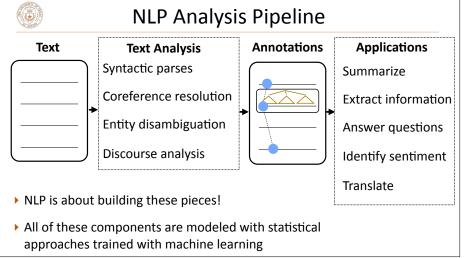
Administrivia

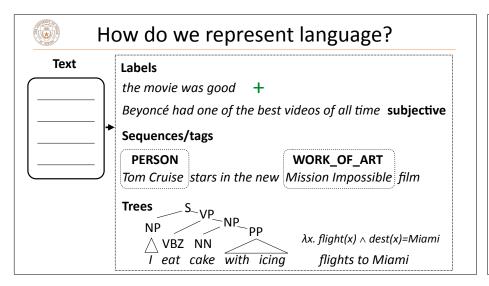
- ▶ Lecture: Tuesdays and Thursdays 9:30am 10:45am
- Course website: http://www.cs.utexas.edu/~gdurrett/courses/sp2021/cs388.shtml
- ▶ Gradescope: you should've gotten an email
- ▶ Piazza: link on the course website
- My office hours: Office hours: Tuesday 1pm-2pm, Wednesday 3:30pm-4:30pm
 - Note: my OHs today are 12:30pm-1:30pm
- ▶ TA: Xi Ye. See course website for OHs

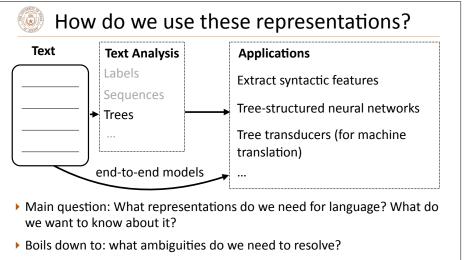

Course Requirements

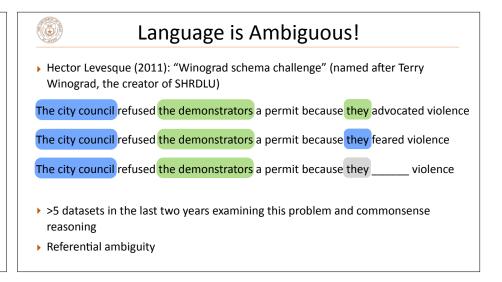

- 391L Machine Learning (or equivalent)
- ▶ 311 or 311H Discrete Math for Computer Science (or equivalent)
- Python experience
- Additional prior exposure to probability, linear algebra, optimization, linguistics, and NLP useful but not required
- Mini1 is out now (due January 28), please look at it soon
- If this seems like it'll be challenging for you, come and talk to me (this is smaller-scale than the projects, which are smaller-scale than the final project)

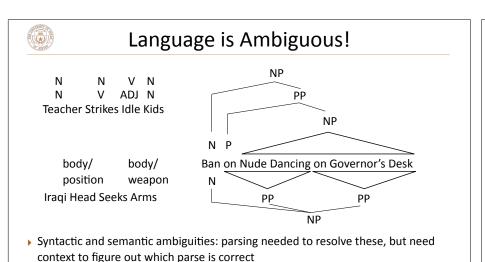

What's the goal of NLP?


▶ Be able to solve problems that require deep understanding of text

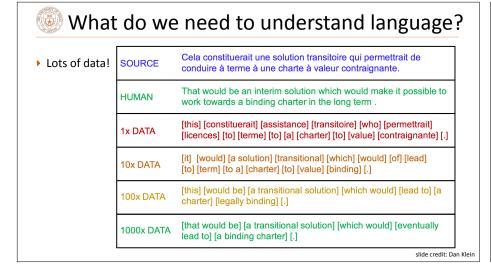


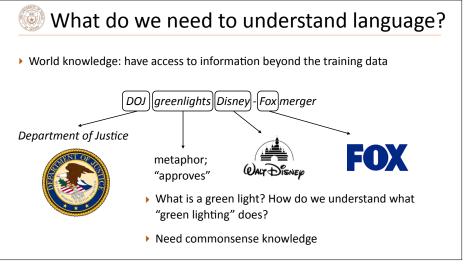


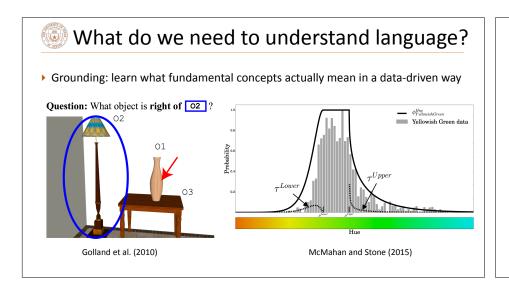




Why is language hard? (and how can we handle that?)

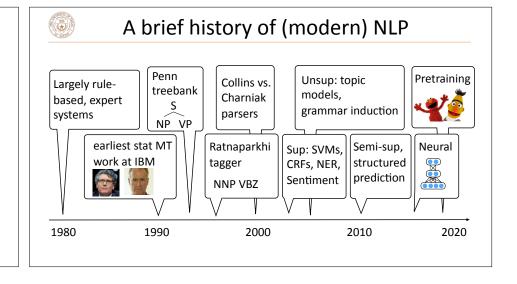

example credit: Dan Klein




▶ Combinatorially many possibilities, many you won't even register as ambiguities, but systems still have to resolve them

He makes truly beautiful

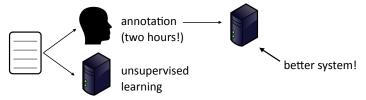
It fact actually handsome



What do we need to understand language?

- ▶ Linguistic structure
- ...but computers probably won't understand language the same way humans do
- ▶ However, linguistics tells us what phenomena we need to be able to deal with and gives us hints about how language works
 - a. John has been having a lot of trouble arranging his vacation.
 - b. He cannot find anyone to take over his responsibilities. (he = John) C_b = John; C_f = {John}
 - c. He called up Mike yesterday to work out a plan. (he = John) C_b = John; C_f = {John, Mike} (CONTINUE)
 - d. Mike has annoyed him a lot recently. $C_b = \text{John}$; $C_f = \{\text{Mike, John}\}\ (\text{RETAIN})$
 - e. He called John at 5 AM on Friday last week. (he = Mike) $C_h = Mike$; $C_f = \{Mike, John\}$ (SHIFT)

Centering Theory Grosz et al. (1995)


What techniques do we use? (to combine data, knowledge, linguistics, etc.)

Supervised vs. Unsupervised

> Supervised techniques work well on very little data (even neural networks)

Fully unsupervised techniques have fallen out of favor

"Learning a Part-of-Speech Tagger from Two Hours of Annotation" Garrette and Baldridge (2013)

Pretraining

ullet Language modeling: predict the next word in a text $\ P(w_i|w_1,\ldots,w_{i-1})$

 $P(w \mid I \text{ want to go to}) = 0.01 \text{ Hawai'i}$ 0.005 LA

0.0001 class

: use this model for other purposes

 $P(w \mid \text{the acting was horrible, I think the movie was}) = 0.1 \text{ bad}$ 0.001 good

Model understands some sentiment?

Train a neural network to do language modeling on massive unlabeled text, fine-

tune it to do {tagging, sentiment, question answering, ...} Peters et al. (2018), Devlin et al. (2019)

Interpretability

▶ When we have complex models, how do we understand their decisions?

The movie is mediocre, maybe even bad.

Negative 99.8%

The movie is mediocre, maybe even bad

The movie is mediocre, maybe even bad.

Negative 98.0%

Negative 98.7%

Positive 63.4%

Positive 74.5%

Negative 97.9%

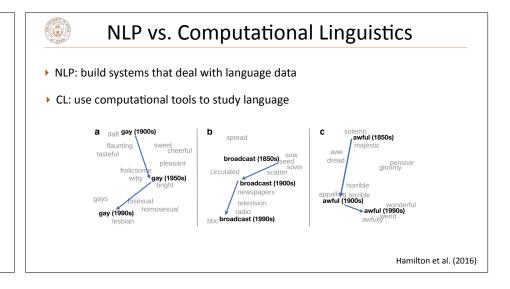
The movie is mediocre, maybe even bad.

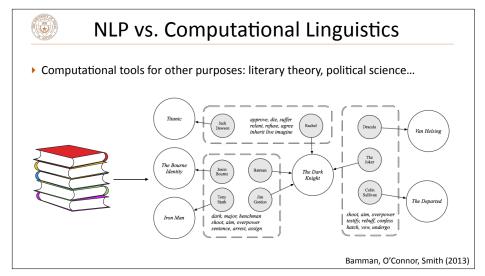
Wallace, Gardner, Singh Interpretability Tutorial at EMNLP 2020

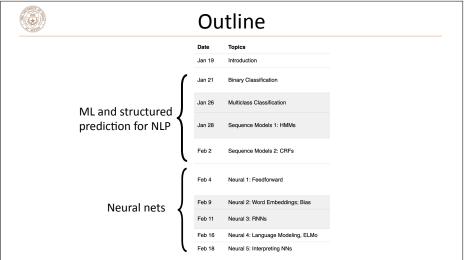
Interpretability

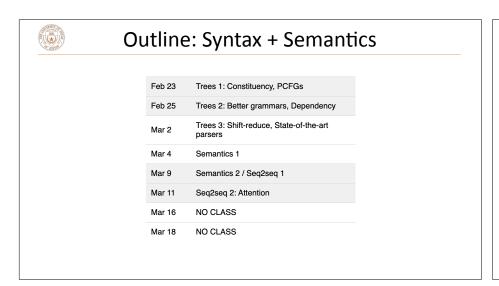
- ▶ When we have complex models, how do we understand their decisions?
- "Attribution": understand what parts of the input contribute to a prediction
 - Why was it class A instead of class B?
 - What is the "counterfactual" scenario we are considering (the foil)?

I drank tea because I don't like coffee

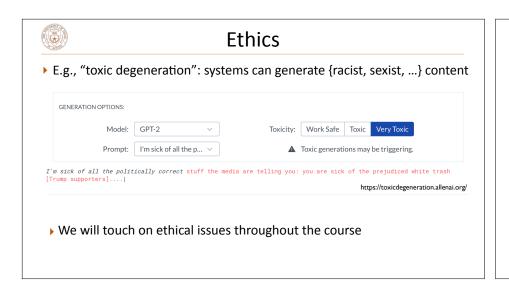

I drank tea because I was thirsty (Jacovi and Goldberg, 2020))

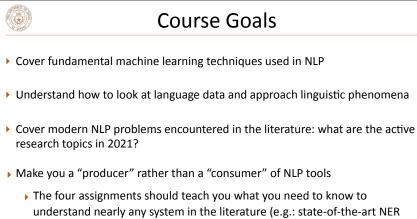

- Dataset biases: does our data have flaws that prevent the model from doing the right thing?
- Probing: what representations get learned in deep models?




Where are we?


- NLP consists of: analyzing and building representations for text, solving problems involving text
- ▶ These problems are hard because language is ambiguous, requires drawing on data, knowledge, and linguistics to solve
- Knowing which techniques use requires understanding dataset size, problem complexity, and a lot of tricks!
- NLP encompasses all of these things





system = project 1 + mini 2 + BERT, basic MT system = project 2)

Assignments

- Two minis (10% each), two projects (20% each)
- ▶ Implementation-oriented, with an open-ended component to each
- Mini 1 (classification) is out NOW
- ▶ 1 week for minis, ~2 weeks per project, 5 "slip days" for automatic extensions
- Grading:
- ▶ Minis: largely graded based on code performance
- ▶ Projects: graded on a mix of code performance, writeup, extension

These projects require understanding of the concepts, ability to write performant code, and ability to think about how to debug complex systems. **They are challenging, so start early!**

Assignments

- ▶ Final project (40%)
- ▶ Groups of 2 preferred, 1 is possible
- ▶ (Brief!) proposal to be approved by me by the midpoint of the semester
- ▶ Written in the style and tone of an ACL paper

Survey (on Instapoll)

- 1. Name
- 2. Fill in: I am a [CS /] [PhD / masters / undergrad] in year [1 2 3 4 5+]
- 3. Write one reason you want to take this class or one thing you want to get out of it
- 4. One interesting fact about yourself, or what you like to do in your spare time