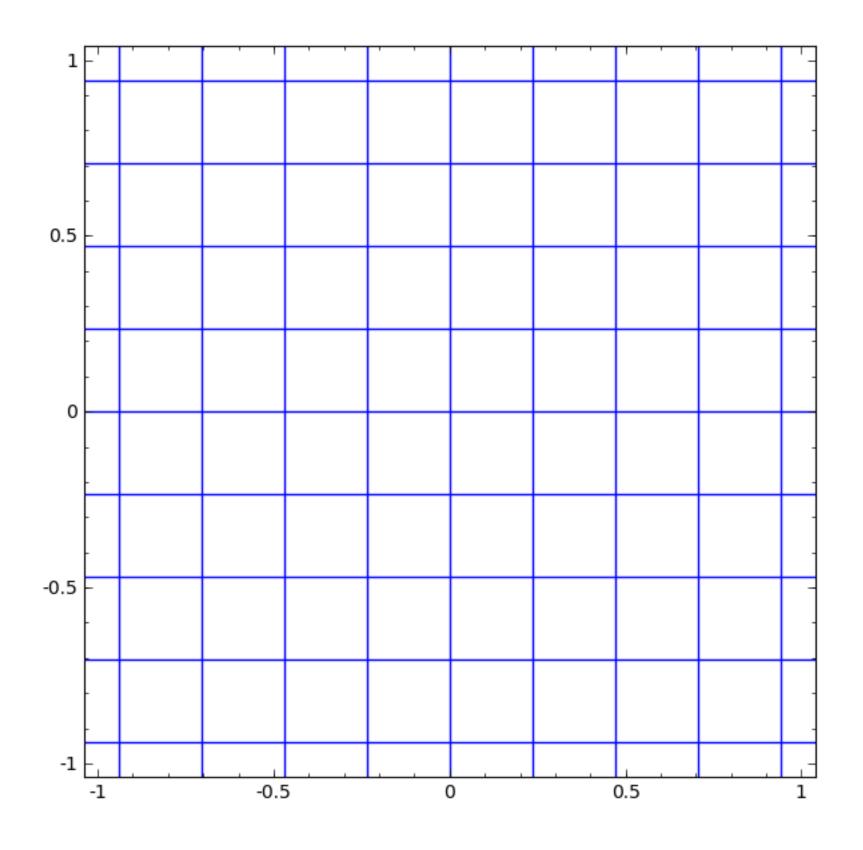
Neural Net Basics

Linear model: $y = \mathbf{w} \cdot \mathbf{x} + b$

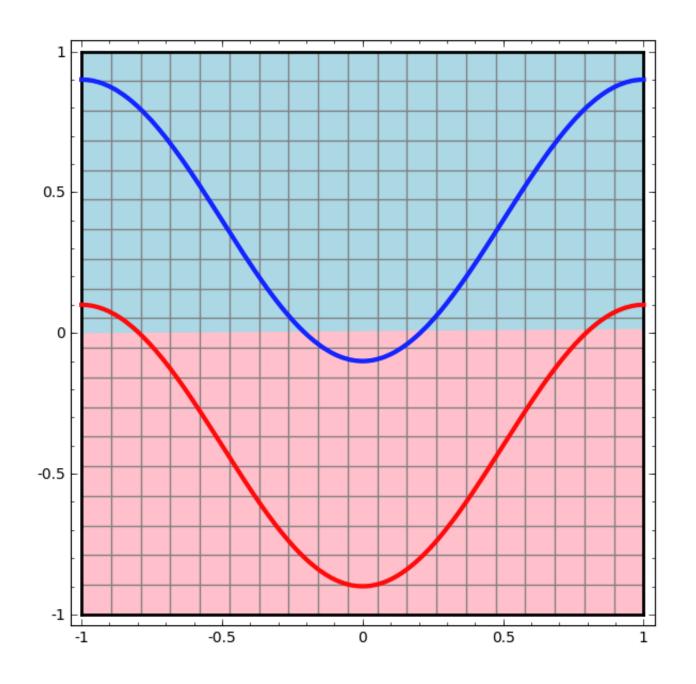
 $y = g(\mathbf{w} \cdot \mathbf{x} + b)$ $\mathbf{y} = g(\mathbf{W}\mathbf{x} + \mathbf{b})$ Nonlinear Warp Shift transformation space pred = $\mathbf{w'}^{\dagger}\mathbf{y}$

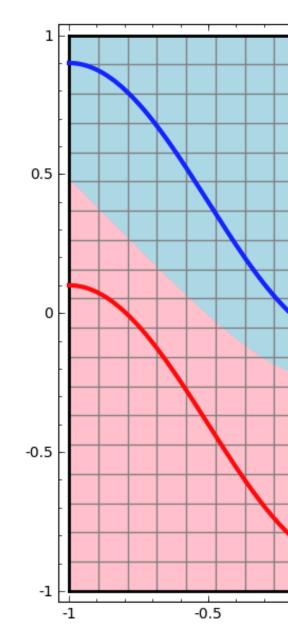
Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Neural Networks



Linear classifier



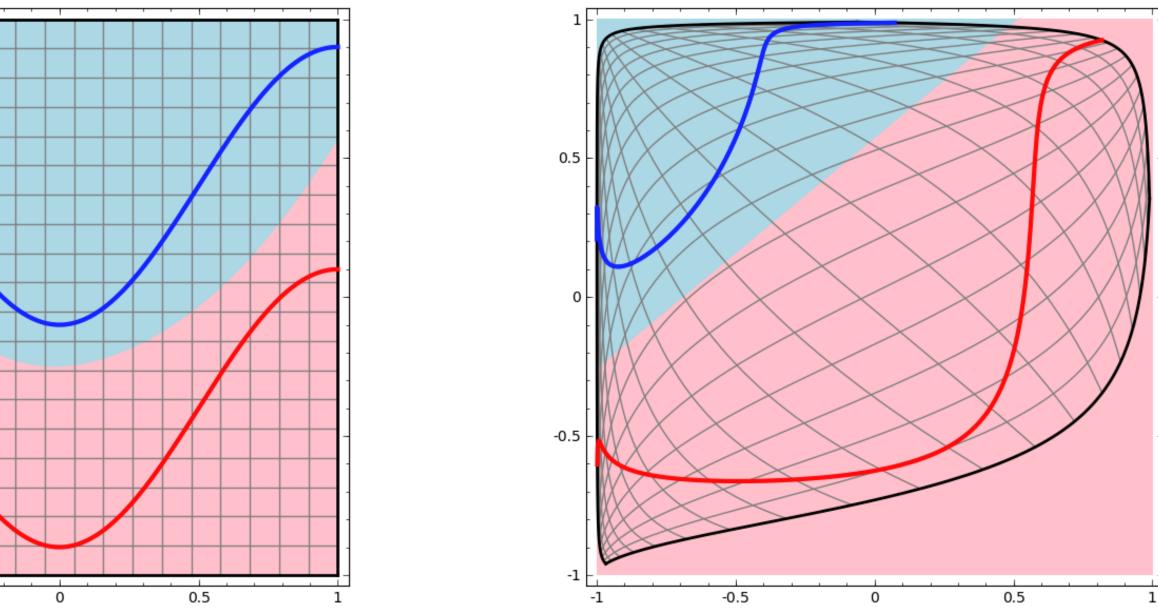


Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

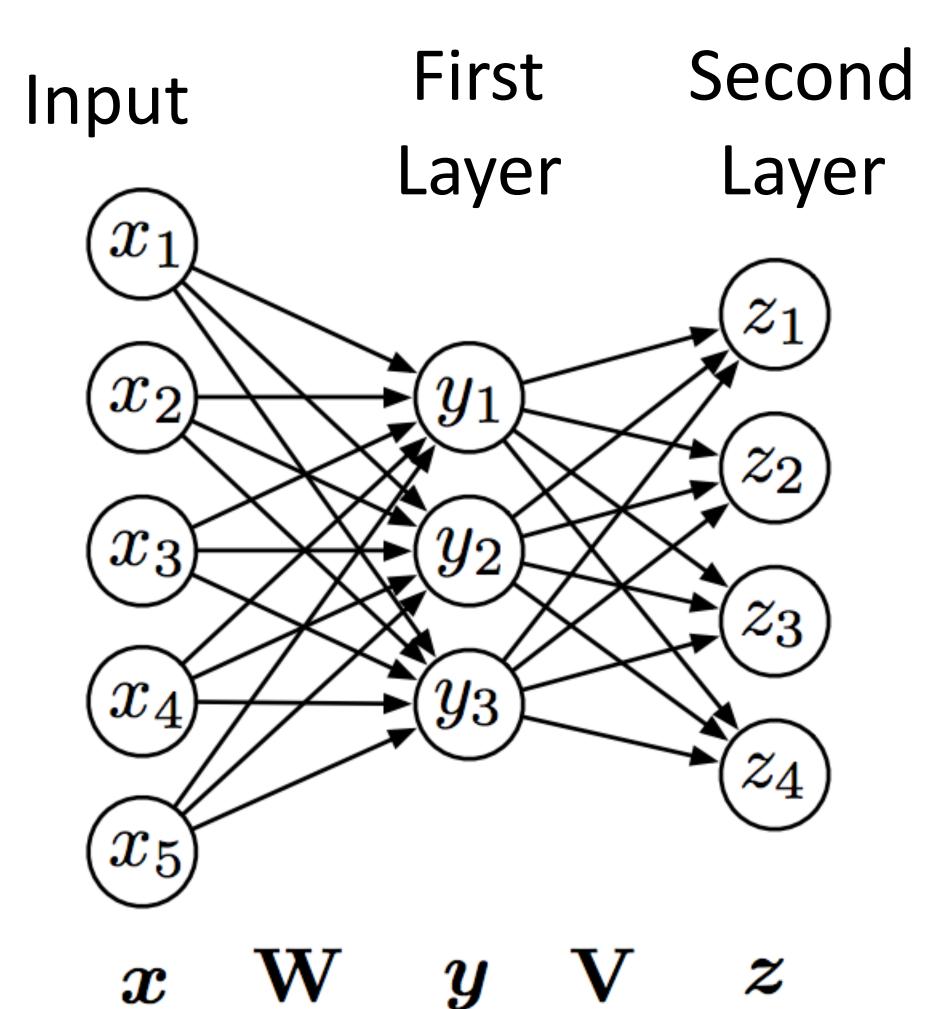
Neural Networks

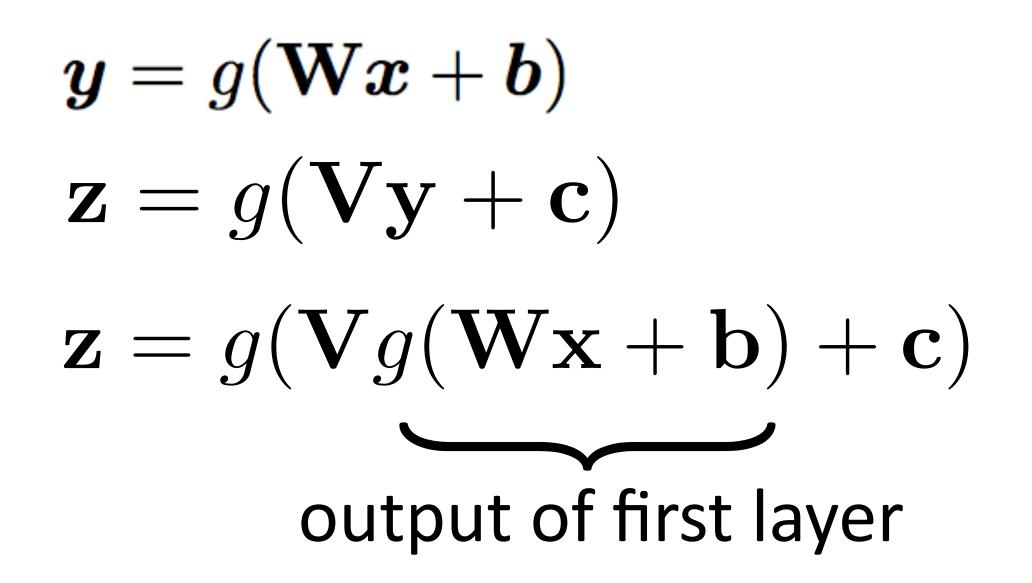
Neural network

Linear classification in the transformed space!



Deep Neural Networks

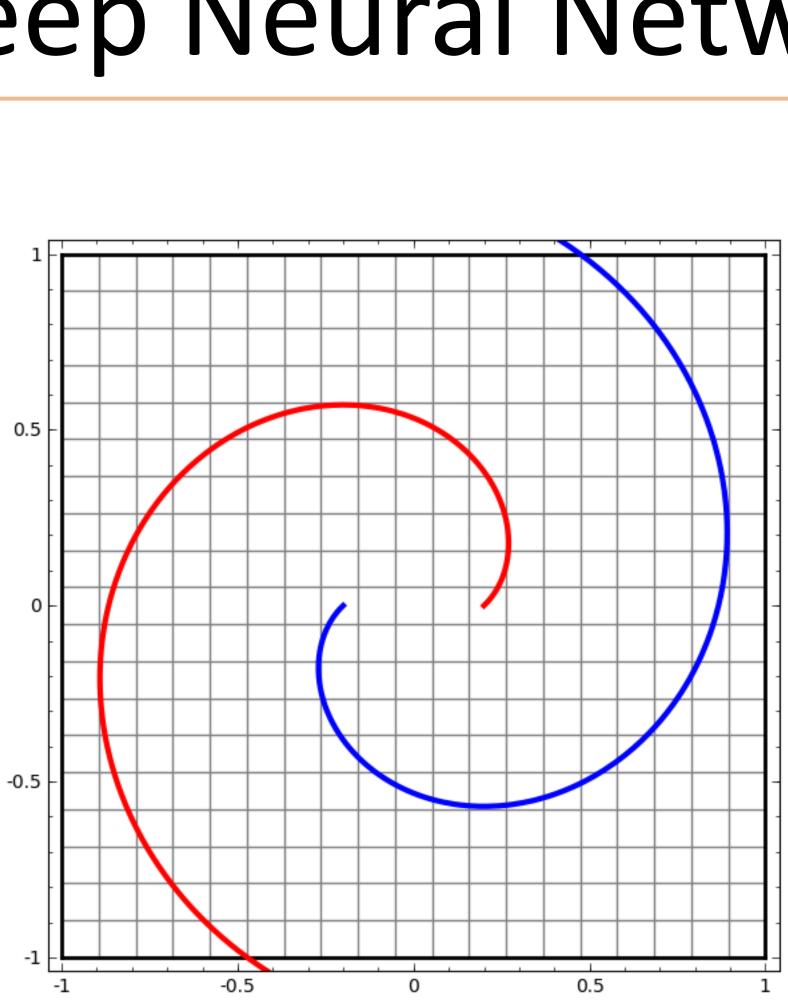




"Feedforward" computation (not recurrent)

Adopted from Chris Dyer

Deep Neural Networks



Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Feedforward Networks, Backpropagation

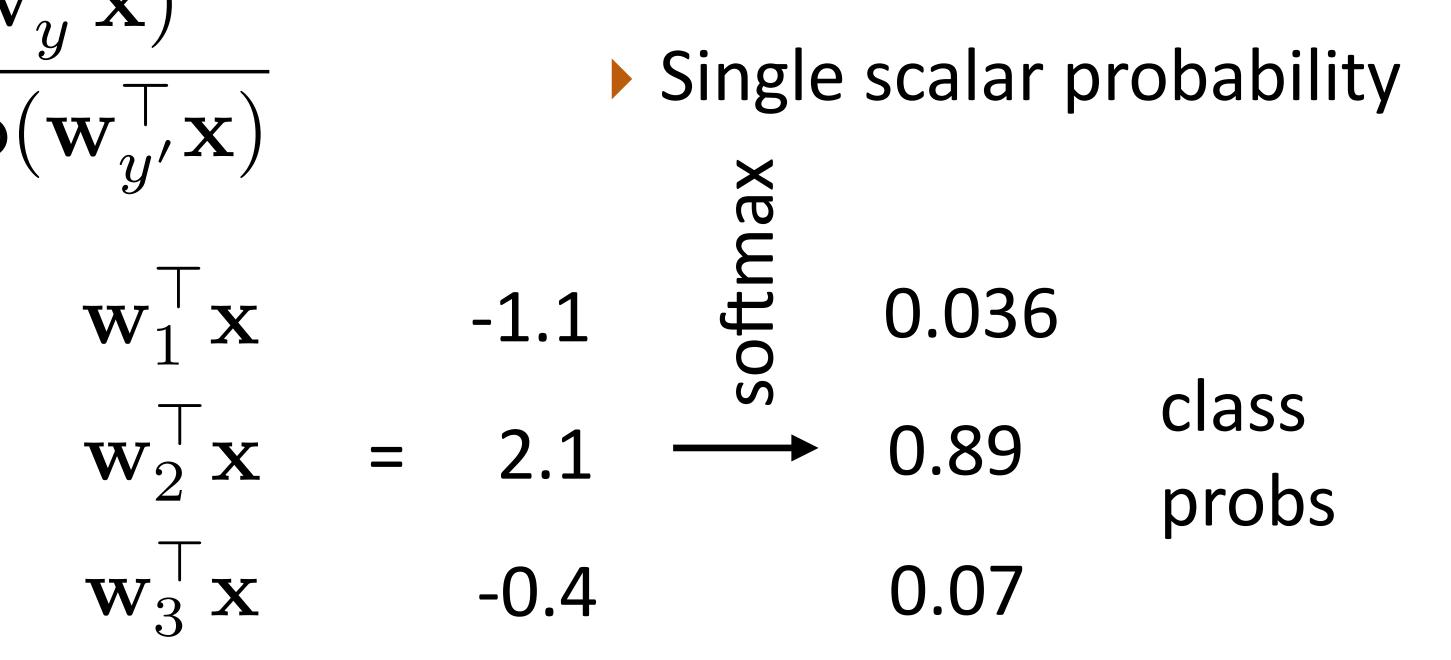
Vectorization and Softmax

 $P(y|\mathbf{x}) = \frac{\exp(\mathbf{w}_y^{\top}\mathbf{x})}{\sum_{y'} \exp(\mathbf{w}_{y'}^{\top}\mathbf{x})}$

Three classes, "different weights" $\mathbf{w}_2^\top \mathbf{x}$ $\mathbf{w}_3^\top \mathbf{x}$

Softmax operation = "exponentiate and normalize"

We write this as: $\operatorname{softmax}(W\mathbf{x})$



Logistic Regression with NNs

 $P(y|\mathbf{x}) = \frac{\exp(\mathbf{w}_y^{\top}\mathbf{x})}{\sum_{y'} \exp(\mathbf{w}_{y'}^{\top}\mathbf{x})}$

$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wf(\mathbf{x}))$

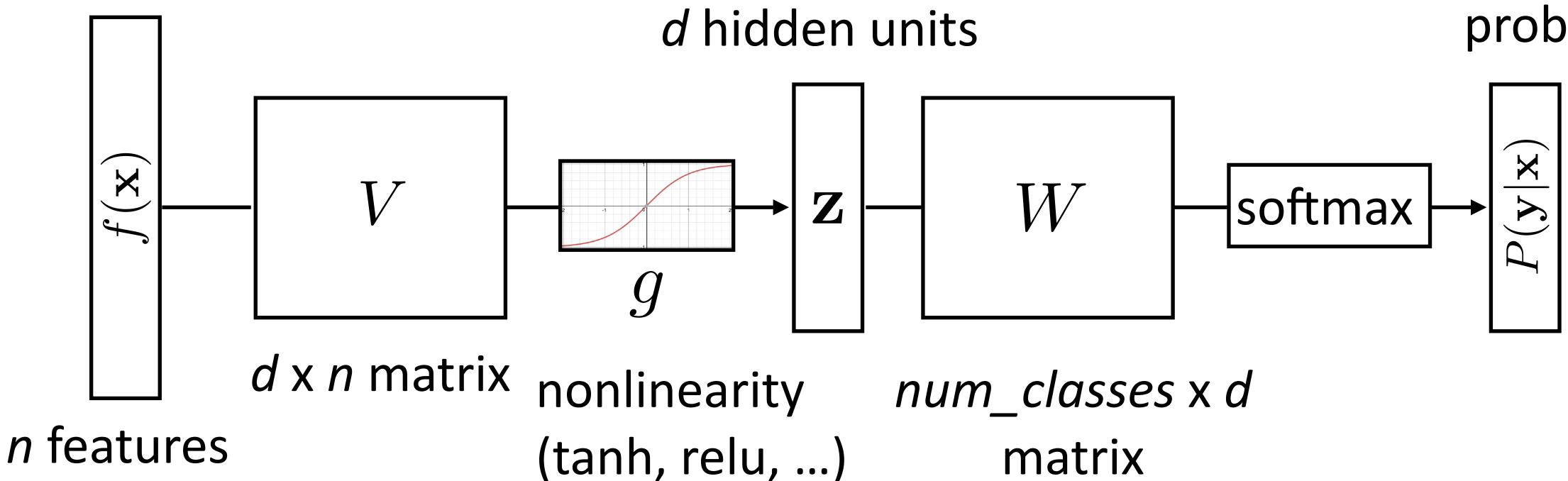
 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$

Single scalar probability

Weight vector per class; W is [num classes x num feats]

Now one hidden layer

Neural Networks for Classification



num_classes probs

Training Neural Networks

 $P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(W\mathbf{z})$ $\mathbf{z} = g(Vf(\mathbf{x}))$

Maximize log likelihood of training data

$$\mathcal{L}(\mathbf{x}, i^*) = \log P(y = i^* | \mathbf{x}) =$$

- i*: index of the gold label
- $\triangleright e_i$: 1 in the *i*th row, zero elsewhere. Dot by this = select *i*th index

$$\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum_{i \in \mathcal{L}} V_i \mathbf{x} \cdot e_$$

 $= \log (\operatorname{softmax}(W\mathbf{z}) \cdot e_{i^*})$

 $\sum \exp(W\mathbf{z}) \cdot e_j$

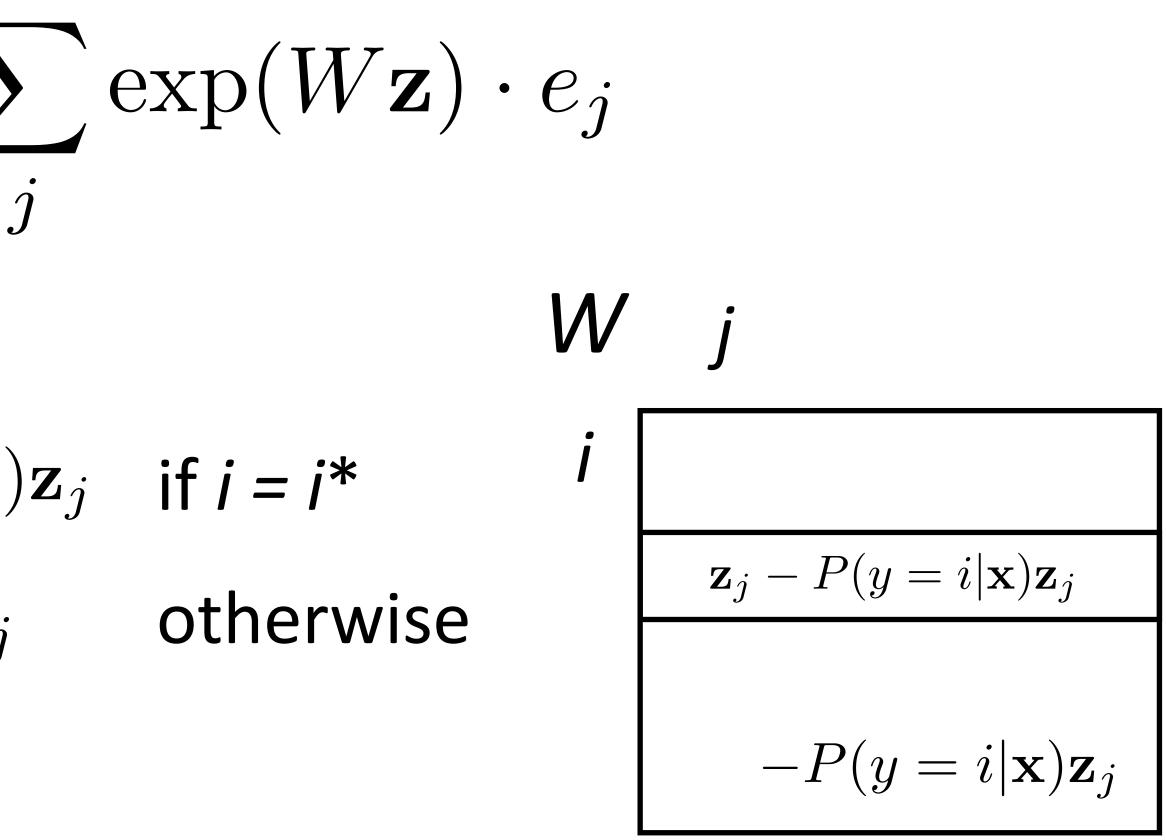
Computing Gradients

 $\mathcal{L}(\mathbf{x}, i^*) = W\mathbf{z} \cdot e_{i^*} - \log \sum \exp(W\mathbf{z}) \cdot e_j$

• Gradient with respect to W

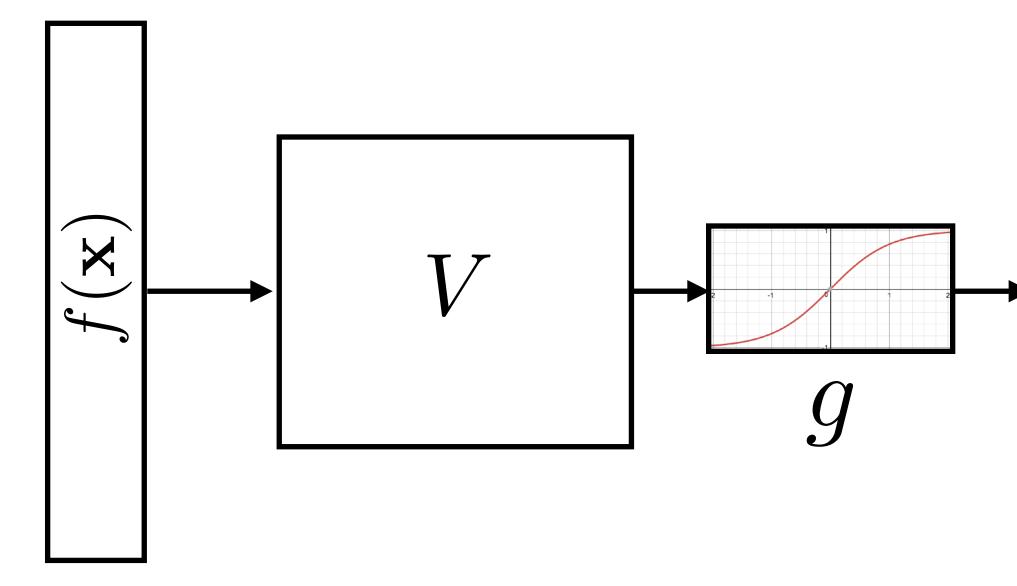
$$\frac{\partial}{\partial W_{ij}} \mathcal{L}(\mathbf{x}, i^*) = \begin{cases} \mathbf{z}_j - P(y = i | \mathbf{x}) \\ -P(y = i | \mathbf{x}) \mathbf{z}_j \end{cases}$$

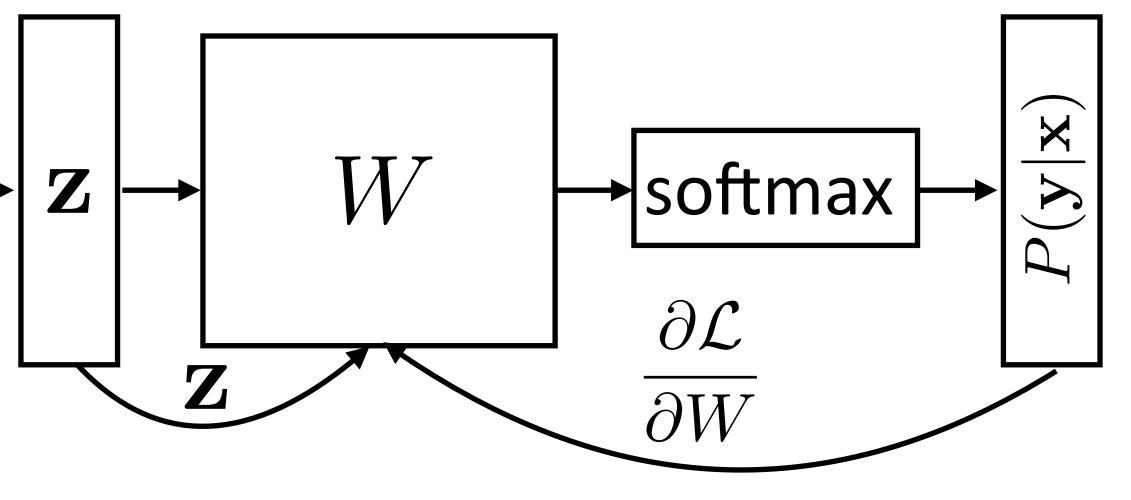
Looks like logistic regression with z as the features!



Neural Networks for Classification

$P(\mathbf{y}|\mathbf{x}) = \operatorname{softmax}(Wg(Vf(\mathbf{x})))$





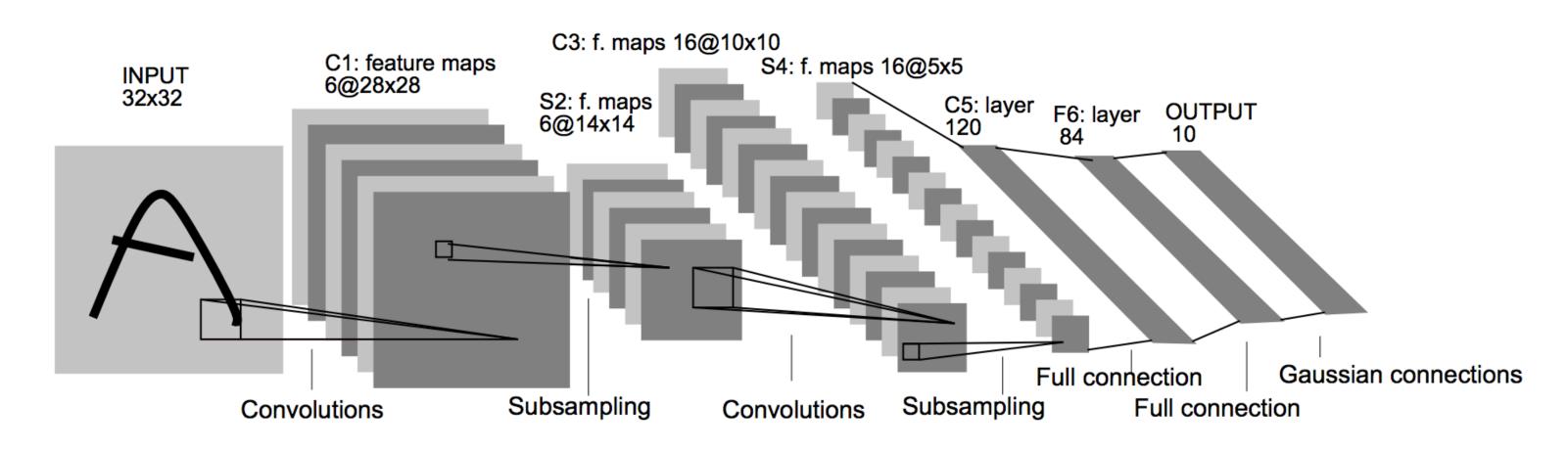
- Gradients of output weights W are easy to compute looks like logistic regression with hidden layer z as feature vector
- Use the chain rule from calculus to compute an update for V. Looks like running the network in reverse
- Need to remember the values from the forward computation
- Autodiff tools mean you never need to implement this!

Backpropagation

Neural Nets History

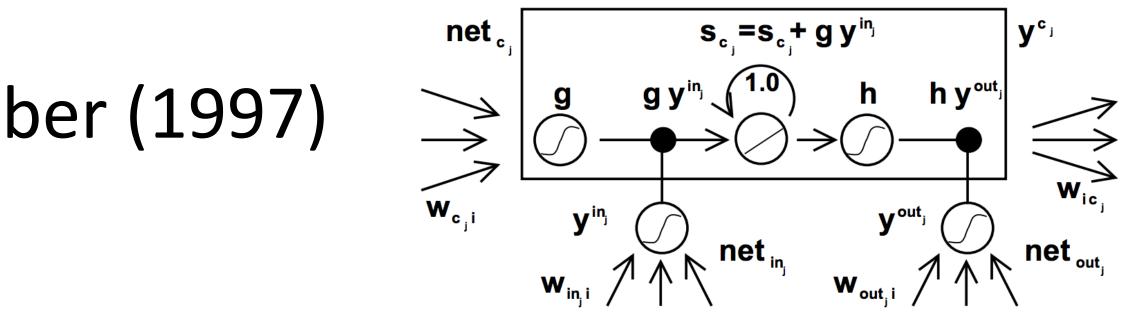
History: NN "dark ages"

Convnets: applied to MNIST by LeCun in 1998



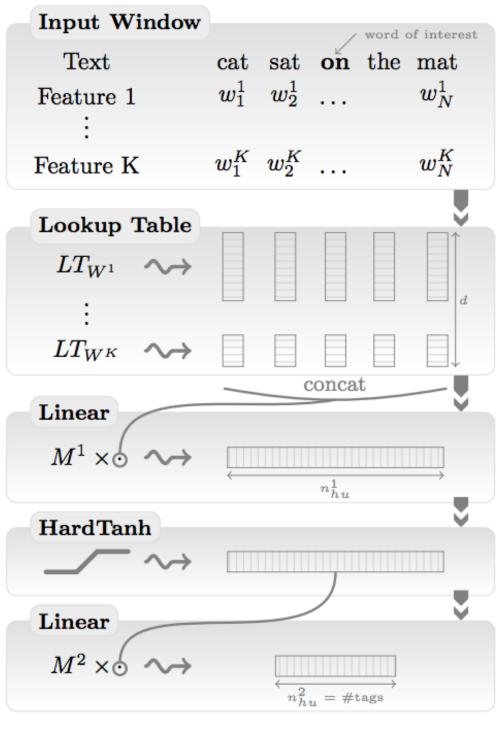
LSTMs: Hochreiter and Schmidhuber (1997)

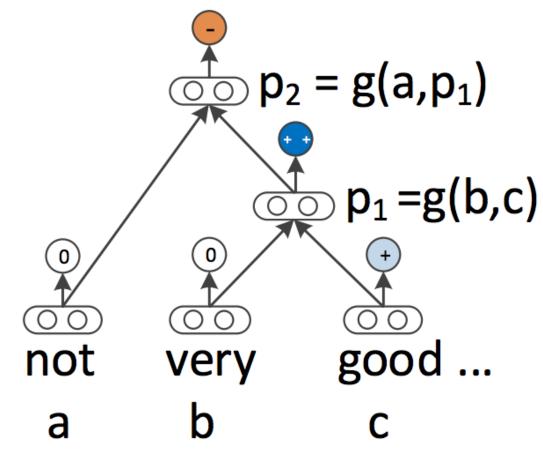
Henderson (2003): neural shift-reduce parser, not SOTA



- Collobert and Weston 2011: "NLP (almost) from scratch" Feedforward neural nets induce features for
 - sequential CRFs ("neural CRF")
 - 2008 version was marred by bad experiments, claimed SOTA but wasn't, 2011 version tied SOTA
- Krizhevskey et al. (2012): AlexNet for vision
- Socher 2011-2014: tree-structured RNNs working okay

2008-2013: A glimmer of light...





- (convnets work for NLP?)
- Sutskever et al. + Bahdanau et al.: seq2seq for neural MT (LSTMs work for NLP?)
- Chen and Manning transition-based dependency parser (even feedforward) networks work well for NLP?)
- 2015: explosion of neural nets for everything under the sun

2014: Stuff starts working

Kim (2014) + Kalchbrenner et al. (2014): sentence classification / sentiment

- Datasets too small: for MT, not really better until you have 1M+ parallel sentences (and really need a lot more)
- Optimization not well understood: good initialization, per-feature scaling + momentum (Adagrad / Adadelta / Adam) work best out-of-the-box
 - - Regularization: dropout is pretty helpful
 - Computers not big enough: can't run for enough iterations
- Inputs: need word representations to have the right continuous semantics

Why didn't they work before?

More implementation details: practical training techniques

Word representations / word vectors

word2vec, GloVe

Next Time