
Neural	Net	Basics



Neural	Networks

Taken	from	h5p://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Warp 
space ShiftNonlinear 

transformation

Linear model: y = w · x+ b

y = g(w · x+ b)
y = g(Wx+ b)

pred = w0>y



Neural	Networks

Taken	from	h5p://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Linear	classifier Neural	network
Linear	classificaGon	
in	the	transformed	
space!	



Deep	Neural	Networks

Adopted from Chris Dyer

}
output	of	first	layer

z = g(Vg(Wx+ b) + c)

z = g(Vy + c)

Input Second  
Layer

First	
Layer

“Feedforward”	computaGon	(not	
recurrent)



Deep	Neural	Networks

Taken	from	h5p://colah.github.io/posts/2014-03-NN-Manifolds-Topology/



Feedforward	Networks,	
BackpropagaGon



VectorizaGon	and	SoTmax

‣ Single	scalar	probabilityP (y|x) =
exp(w

>
y x)P

y0 exp(w
>
y0x)

‣ Three	classes, 
“different	weights” w

>
2 x

w

>
3 x

w

>
1 x

=

-1.1

2.1

-0.4

0.036

0.89

0.07

so
Tm

ax

softmax(Wx)

class	
probs

‣We	write	this	as:

‣ SoTmax	operaGon	=	“exponenGate	and	normalize”



LogisGc	Regression	with	NNs
‣ Single	scalar	probability

P (y|x) = softmax(Wf(x)) ‣Weight	vector	per	class; 
W	is	[num	classes	x	num	feats]

P (y|x) = softmax(Wg(V f(x))) ‣ Now	one	hidden	layer

P (y|x) =
exp(w

>
y x)P

y0 exp(w
>
y0x)



Neural	Networks	for	ClassificaGon

V

n	features

d	hidden	units

d	x	n	matrix num_classes	x	d	
matrix

soTmaxWf
(x
)

z

nonlinearity 
(tanh,	relu,	…)

g P
(y

|x
)

P (y|x) = softmax(Wg(V f(x)))
num_classes	

probs



Training	Neural	Networks

‣Maximize	log	likelihood	of	training	data

‣ i*:	index	of	the	gold	label

‣ ei:	1	in	the	ith	row,	zero	elsewhere.	Dot	by	this	=	select	ith	index

z = g(V f(x))P (y|x) = softmax(Wz)

L(x, i⇤) = Wz · ei⇤ � log

X

j

exp(Wz) · ej

L(x, i⇤) = logP (y = i⇤|x) = log (softmax(Wz) · ei⇤)



CompuGng	Gradients

‣ Gradient	with	respect	to	W

if	i	=	i*
zj � P (y = i|x)zj

�P (y = i|x)zj

@

@Wij
L(x, i⇤) =

zj � P (y = i|x)zj

�P (y = i|x)zj otherwise

‣ Looks	like	logisGc	regression	with	z	as	the	features!

i

j

{

L(x, i⇤) = Wz · ei⇤ � log

X

j

exp(Wz) · ej

W



Neural	Networks	for	ClassificaGon

V soTmaxWf
(x
)

z
g P

(y
|x
)

P (y|x) = softmax(Wg(V f(x)))

@L
@Wz



BackpropagaGon
‣ Gradients	of	output	weights	W	are	easy	to	compute	—	looks	like	
logisGc	regression	with	hidden	layer	z	as	feature	vector

‣ Use	the	chain	rule	from	calculus	to	compute	an	update	for	V.	Looks	
like	running	the	network	in	reverse

‣ Need	to	remember	the	values	from	the	forward	computaGon

‣ Autodiff	tools	mean	you	never	need	to	implement	this!



Neural	Nets	History



History:	NN	“dark	ages”
‣ Convnets:	applied	to	MNIST	by	LeCun	in	1998

‣ LSTMs:	Hochreiter	and	Schmidhuber	(1997)

‣ Henderson	(2003):	neural	shiT-reduce	parser,	not	SOTA



2008-2013:	A	glimmer	of	light…

‣ Collobert	and	Weston	2011:	“NLP	(almost)	from	scratch”
‣ Feedforward	neural	nets	induce	features	for	
sequenGal	CRFs	(“neural	CRF”)

‣ 2008	version	was	marred	by	bad	experiments,	
claimed	SOTA	but	wasn’t,	2011	version	Ged	SOTA

‣ Socher	2011-2014:	tree-structured	RNNs	working	okay

‣ Krizhevskey	et	al.	(2012):	AlexNet	for	vision



2014:	Stuff	starts	working

‣ Sutskever	et	al.	+	Bahdanau	et	al.:	seq2seq	for	neural	MT	(LSTMs	work	
for	NLP?)

‣ Kim	(2014)	+	Kalchbrenner	et	al.	(2014):	sentence	classificaGon	/	senGment	
(convnets	work	for	NLP?)

‣ 2015:	explosion	of	neural	nets	for	everything	under	the	sun

‣ Chen	and	Manning	transiGon-based	dependency	parser	(even	feedforward	
networks	work	well	for	NLP?)



Why	didn’t	they	work	before?
‣ Datasets	too	small:	for	MT,	not	really	be5er	unGl	you	have	1M+	parallel	
sentences	(and	really	need	a	lot	more)

‣Op,miza,on	not	well	understood:	good	iniGalizaGon,	per-feature	scaling	
+	momentum	(Adagrad	/	Adadelta	/	Adam)	work	best	out-of-the-box

‣ Regulariza,on:	dropout	is	pre5y	helpful

‣ Inputs:	need	word	representaGons	to	have	the	right	conGnuous	semanGcs

‣ Computers	not	big	enough:	can’t	run	for	enough	iteraGons



Next	Time
‣More	implementaGon	details:	pracGcal	training	techniques

‣Word	representaGons	/	word	vectors

‣ word2vec,	GloVe


