
CS378 Assignment 2: Feedforward Neural Networks

Due date: Thursday, February 21 at 5:00pm CST

Academic Honesty: Reminder that assignments should be completed independently by each student. See
the syllabus for more detailed discussion of academic honesty. Limit any discussion of assignments with
other students to clarification of the requirements or definitions of the problems, or to understanding the
existing code or general course material. Never discuss issues directly relevant to problem solutions. Finally,
you may not publish solutions to these assignments or consult solutions that exist in the wild.

Goals The main goal of this assignment is for you to get experience training neural networks over text.
You’ll play around with feedforward neural networks in PyTorch and see the impact of different sets of word
vectors on a sentiment classification problem.

Dataset and Code

Please use Python 3.5+ and PyTorch 1.0 for this project.

Data The dataset you’ll be using here is the same as in Assignment 1.

Installing PyTorch You will need PyTorch 1.0 to run the code. If you are using CS lab machines,
PyTorch 1.0 should already be installed and you can skip this step. To get it working on your own
machine, you should follow the instructions at https://pytorch.org/get-started/locally/.
The assignment is small-scale enough to complete using CPU only, so don’t worry about installing CUDA
and getting GPU support working unless you want to.

Installing in a virtual environment is usually best; we recommend using anaconda, especially if you are
on OS X, where the system python has some weird package versions. Once you have anaconda installed,
you can create a virtual environment with the following command:and install PyTorch with the following
commands:

conda create -n my-cs378-virtenv python=3

where my-cs378-virtenv can be any name you choose. Then, if you’re running Linux, install PyTorch
with:

conda install -n my-cs378-virtenv -c pytorch pytorch-cpu torchvision-cpu

If you’re on Mac, use:

conda install -n my-cs378-virtenv -c pytorch pytorch torchvision

Getting started Download the code and data. Expand the tgz file and change into the directory. To
confirm everything is working properly, run:

python neural_sentiment_classifier.py --model TRIVIAL --no_run_on_test

This loads the data, instantiates a TrivialSentimentClassifier that always returns 1 (positive),
and evaluates it on the training and dev sets. Compared to Assignment 1, this runs an extra word embedding
loading step.

1



Framework code The framework code you are given consists of several files. neural sentiment classifier.py
is the main class, which is very similar to the main class from Assignment 1. Do not modify this file for
your final submission, though it’s okay to add command line arguments during development or do what-
ever you need. It uses argparse to read in several command line arguments. You should generally not
need to modify the paths. --model and --feats control the model specification. This file also contains
evaluation code. The main method loads in the data, initializes the feature extractor, trains the model, and
evaluates it on train, dev, and blind test, and writes the blind test results to a file.

Data reading in sentiment data.py and the utilities in utils.py are exactly as in Assignment
1. sentiment data.py now additionally contains a WordEmbeddings class and code for reading it
from a file. This class wraps a matrix of word vectors and an Indexer in order to index new words.

Your modifications will take place in a few files, as described in Part 2. First, you will explore optimization.py
more in Part 1.

Part 1: PyTorch Warmup and Optimization (20 points)

In this part, you’ll get some initial familiarity with using PyTorch to optimize functions. We define two
functions in optimization.py. The first is a quadratic with n variables:

y =

n∑
i=1

(xi − 1)2

The second is the Rosenbrock function, a classic test for optimization algorithms:

y =
n−1∑
i=1

(
100(xi+1 − x2i )

2 + (1− xi)
2
)

Both attain their minima at x = (1, 1, . . . , 1), all ones.
The main function in optimization.py will optimize one of these functions (depending on the com-

mand line argument) using PyTorch. For example, to run Adam on the quadratic function with learning rate
of 1.0, run:

python optimization.py --func QUAD --method ADAM --lr 1.0

Q1 (10 points) Compare SGD and Adam on the quadratic function. Try different step sizes. For each
optimization technique, describe the range of behaviors you see depending on step size. (Hint: try varying
step sizes by orders of magnitude, like 1, 0.1, 0.001, etc.)

Q2 (10 points) Compare SGD and Adam on the Rosenbrock function. Try different step sizes. For each
optimization technique, describe the range of behaviors you see depending on step size. (Hint: try varying
step sizes by orders of magnitude, like 1, 0.1, 0.001, etc.)

Part 2: Deep Averaging Network (55 points)

In this part, you’ll implement a deep averaging network as discussed in lecture and in Iyyer et al. (2015). If
our input s = (w1, . . . , wn), then we use a feedforward neural network for prediction with input 1

n

∑n
i=1 e(wi),

where e is a function that maps a word w to its real-valued vector embedding.

2



You are given two sources of pretrained embeddings you can use: data/glove.6B.50d-relativized.txt
and data/glove.6B.300d-relativized.txt, the loading of which is controlled by the --word vecs path.
These are trained using GloVe (Pennington et al., 2014). These vectors have been relativized to your data,
meaning that they do not contain embeddings for words that don’t occur in the train, dev, or test data. This
is purely a runtime and memory optimization.
models.py is the primary file you’ll be modifying for this part. train deep averaging network

is your main entry point: this function should return an instance of NeuralSentimentClassifier,
which you should implement as well. Usage of this class is similar to the classifiers in Assignment 1.

PyTorch example ffnn example.py implements the network discussed in lecture for the synthetic
XOR task. It shows a minimal example of the PyTorch network definition, training, and evaluation loop.
Feel free to refer to this code extensively and to copy-paste parts of it into your solution as needed. However,
also feel free to modify it to change and improve any aspects that seem relevant.

Most of this code is self-documenting. The most unintuitive piece is calling zero grad before calling
backward! Backward computation uses in-place storage and this must be zeroed out before every gradient
computation. Not doing so effectively leads to an extra momentum term in the optimizer and can cause
mysteriously bad (but not horrific) performance. It’s also important to initialize your weights appropriately.

Implementation Following the example, the rough steps you should take are:

1. Define a subclass of nn.Module that does your prediction. This should return a log-probability
distribution over class labels.

2. Compute your classification loss based on the prediction. In lecture, we saw using the negative log
probability of the correct label as the loss.

3. Call network.zero grad() (zeroes out in-place gradient vectors), loss.backward (runs the
backward pass to compute gradients), and optimizer.step to update your parameters.

Implementation and Debugging Tips Come back to this section as you tackle the assignment!

• You should log training loss over your models’ epochs; this will give you an idea of how the learning
process is proceeding.

• You should be able to do the vast majority of your parameter tuning in small-scale experiments. Try to
avoid running large experiments on the whole dataset in order to keep your development time fast.

• If you see NaNs in your code, it’s very likely due to a large step size.

• For creating tensors, torch.tensor and torch.from numpy are pretty useful. For manipulating
tensors, permute lets you rearrange axes, squeeze can eliminate dimensions of length 1, expand
can duplicate a tensor across a dimension, etc. You probably won’t need to use all of these in this
project, but they’re there if you need them. PyTorch supports most basic arithmetic operations done
elementwise on tensors.

• There are two major approaches to handling sentence input data. The first is to pre-average the embed-
dings for each sentence (outside of PyTorch). The second is to treat the input as a sequence of word
indices. In this case, you likely want to use torch.nn.Embedding for this purpose. You’ll need to
do the second if you want to fine-tune your word embeddings.

3



• Google/Stack Overflow and the PyTorch documentation1 are your friends. Although you should not
seek out prepackaged solutions to the assignment itself, you should avail yourself of the resources out
there to learn the tools.

Q3 (30 points) Implement the deep averaging network. You should get least 75% accuracy on the de-
velopment set in less than 15 minutes of train time on a CS lab machine (and you should be able to get
good performance in 3-5 minutes). Your implementation should consist of averaging vectors and using a
feedforward network, but otherwise you do not need to stick close to what’s discussed in Iyyer et al. (2015).
Things you can experiment with include varying the number of layers, the layer sizes, which source of em-
beddings you use (50d or 300d), your optimizer, the nonlinearity, whether you add dropout layers, and your
initialization. Once you’re done tuning your model, hardcode the parameters so the command to be
run is correct. Briefly describe what you did and report your results in the writeup.

Q4 (5 points) Try varying the hidden dimension size(s) in your model. Report results for a few different
values. What trends that you see? (Try as small as 1 and as large as you have patience for.)

Q5 (5 points) Try varying the learning rate for your chosen optimizer. Report results for a few different
values. What trends do you see? (Hint: small changes typically don’t make a difference; you should try
changing it by a factor of 10 at a time until you feel like you’ve explored the space.)

Q6 (15 points) Implement batching in your neural network. To do this, you should modify your nn.Module
subclass to take a batch of examples at a time instead of a single example. You should compute the loss over
the entire batch. Otherwise your code can function as before. You can either leave test time as unbatched or
batch it, it’s up to you. Try at least one batch size greater than one. Briefly describe what you did, any
change in the results, and what speedup you see from running with that batch size.

Note that if your module is set up to take word indices as input, different sentences of different lengths
can cause problems. You’ll need to pad your inputs so the sentences fit in a square matrix. The typical way
to do this is to add a placeholder index that maps to the zero vector. If your module takes pre-averaged word
embeddings as input, you won’t need to do this.

Part 3: Understanding Word Embeddings (25 points)

Consider the skip-gram model, defined by

P (y|x) = exp (wx · cy)∑
y′ exp

(
wx · cy′

)
where x is the “main word”, y is the “context word” being predicted, and w, c are d-dimensional vectors
corresponding to words and contexts, respectively. Note that each word has independent vectors for each of
these, so each word really has two embeddings.

Assume a window size of 1. The skip-gram model considers the neighbors of a word to be words on either
side. So with these assumptions, the first sentence above gives the training examples (x = the, y = dog)
and (x = dog, y = the). The skip-gram objective, log likelihood of this training data, is

∑
(x,y) logP (y|x),

where the sum is over all training examples.
1https://pytorch.org/docs/stable/index.html

4



Q7 (10 points) Consider the following sentences:
the dog
the cat
a dog

Suppose the dimensionality of the word embedding space d = 4. Write down the following:

(a) The training examples derived from these sentences

(b) A set of vectors that nearly optimizes the skip-gram objective. That is, give d-dimensional word and
context vectors for the, a, dog, and cat. (We say nearly because this objective can only be optimized in
the limit with vectors of infinite norm. So you can round up to 1 any probability of 0.99 or more.)

(c) The probability of the training set under this set of vectors (again, assuming that 0.99 ≈ 1)

You are allowed to use code to check your answer to this problem, but you should aim to solve it with
mathematical reasoning. Do not submit any code for this part.

Q8 (10 points) Consider the following sentences:
the dog
the cat
a dog
a cat

Now suppose the dimensionality of the word embedding space d = 2. Write down the following:

(a) The training examples derived from these sentences

(b) A set of vectors that nearly optimizes the skip-gram objective (as in the previous part)

(c) The probability of the training set under this set of vectors

Q9 (5 points) Pick a collection of 4-6 nouns from the sentiment dataset and investigate their correspond-
ing word embeddings. What are the cosine similarities between these? What do these tell you about the
geometry of the vector space? Do these make sense? Briefly describe your answers in a few sentences.
Cosine similarity of vectors a and b is defined as

cos(a,b) =
a · b
‖a‖‖b‖

where ‖a‖ is the 2-norm of the vector (
√∑n

i=1 a
2
i ). You do not need to submit any code you used for this

part.

Deliverables and Submission

Your submission will be evaluated on several axes:

1. Writeup: correctness of answers, clarity of explanations, etc.

2. Execution: your code should train and evaluate within the time limits without crashing

3. Accuracy on the development set of your deep averaging network model

4. Accuracy on the blind test set (you should evaluate your best model and include this output)

5



Submission You should submit the following files to Canvas as a flat file upload (no zip or tgz):

1. A PDF or text file of your answers to the questions

2. Blind test set output in a file named test-blind.output.txt. The code produces this by default,
but make sure you include the right version! Include the output from your best deep averaging network
model.

3. models.py. Do not modify or upload any other source files.

Make sure that the following commands work before you submit:

python neural sentiment classifier.py --word vecs path data/glove.6B.50d-relativized.txt

python neural sentiment classifier.py --word vecs path data/glove.6B.300d-relativized.txt

These commands should all print dev results and write blind test output to the file by default.

References

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daumé III. 2015. Deep Unordered Composition
Rivals Syntactic Methods for Text Classification. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics (ACL).

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors for Word Represen-
tation. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP).

6


