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ON UNAPPROXIMABLE VERSIONS OF NP-COMPLETE
PROBLEMS*
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Abstract. We prove that all of Karp’s 21 original NP-complete problems have a version that is
hard to approximate. These versions are obtained from the original problems by adding essentially the
same simple constraint. We further show that these problems are absurdly hard to approximate. In
fact, no polynomial-time algorithm can even approximate log(k) of the magnitude of these problems
to within any constant factor, where log(k) denotes the logarithm iterated k times, unless NP is
recognized by slightly superpolynomial randomized machines. We use the same technique to improve
the constant such that MAX CLIQUE is hard to approximate to within a factor of n. Finally, we
show that it is even harder to approximate two counting problems: counting the number of satisfying
assignments to a monotone 2SAT formula and computing the permanent of -1, 0, 1 matrices.
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1. Introduction.

1.1. Previous work. The theory of NP-completeness was developed in order
to explain why certain computational problems appeared intractable [10, 14, 12]. Yet
certain optimization problems, such as MAX KNAPSACK, while being NP-complete
to compute exactly, can be approximated very accurately. It is therefore vital to
ascertain how difficult various optimization problems are to approximate.

One problem that eluded attempts at accurate approximation is MAX CLIQUE.
This is the problem of finding w(G), the size of a largest clique in the graph G.
There was no explanation for this until Feige et M. [11] showed that for all > 0,
no polynomiM-time algorithm can approximate w(G) to within a factor of 2(lgn)l-

unless N/5 /5, where/5 denotes quasi-polynomial time, or TIME(2PlYg). This
was based on the proof that MIP NEXP [5]. Recently, there have been several
improvements, culminating in the result that approximating (G) to within a factor
of n1/4-(1) is NP-complete [4, 3, 7].

1.2. A new role for old reductions. It is natural and important to identify
other NP-complete problems that are hard to approximate. In the original theory
of NP-completeness, polynomial-time reductions were used. Yet these reductions
might not preserve the quality of an approximation well, so researchers focused on
reductions that preserved the quality of approximation very closely [18, 17]. Us-
ing such reductions, Panconesi and Ranjan [17] defined a class RMAX(2) of opti-
mization problems, of which MAX CLIQUE is one natural complete problem. The
intractability of approximating MAX CLIQUE implies that the other RMAX(2)-
complete problems are intractable to approximate. Recently, Lund and Yannakakis
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[16] used an approximation-preserving reduction to show the intractability of approx-
imating CHROMATIC NUMBER.

Here we show that the reductions can have a much more general form and still
yield unapproximability results. This is essentially because the factors are huge,
namely ne, so polynomial blow-ups will only change this to ne’ We show that Karp’s
original reductions can be modified to have this general form, and hence the original 21
NP-complete problems presented in [14] all have a version that is hard to approximate.
This gives evidence that all NP-complete problems have a version that is hard to
approximate.

1.3. The small jump to unapproximability. What does it mean that an NP-
complete problem has a version that’s hard to approximate? Indeed, an NP-complete
problem is a language-recognition problem and may not even have a corresponding
optimization problem; moreover, many corresponding optimization problems are easy
to approximate. Intuitively, however, it seems reasonable that by adding suiiciently
many constraints to an optimization problem, it becomes "harder," i.e., hard to ap-
proximate. Quite surprisingly, we show that by adding one simple constraint that
is essentially the same for every NP-complete problem, all of Karp’s original NP-
complete problems become unapproximable.

What is this constraint? Usually, we can only form maximization problems when
our NP language L is of the form (x,k) E L == (3y, f(y) >_ k)p(x, y) for some
polynomial-time predicate p and function f. The corresponding optimization problem
is then taken to be maxy..p(x,y)f(y). Of course, if L is of the same form except
with f(y) <_ k, then we end up with the minimization problem miny:p(x,)f(y). For
example, for the NP-complete language VERTEX COVER, x is a graph and y is a
set of vertices; p is the predicate that y forms a vertex cover in x and f(y) is the
size of y. Thus the language is "Does there exist a vertex cover of size k?" while the
optimization problem is to find the size of a minimum vertex cover.

Although we do not prove a general theorem for all NP-complete languages, the
constraint we add makes sense for any NP language. This is because we use the basic
representation of an NP language L as x E L == (3y {0, 1})p(x,y), where m
is polynomial in the length of x. Note that for languages that can be expressed as in
the previous paragraph, the x here is what was previously the ordered pair (x, k) and
the p here is what was previously p(x, y)A (f(y) >_ k) (or, for minimization problems,
f(y) <_ k). The constraint we add is as follows. Using the natural correspondence
between {0, 1}n and subsets of {1,...,m}, we view y as a subset of {1,...,m}.
We have as an additional input a subset S c_ {1,..., m}, and the output should be
maxy{0,1}.:(,) ISNyl. We also insist that there be a y such that p(x, y); otherwise,
by taking S {1,..., m}, deciding whether the maximum is 0 or not is equivalent to
deciding whether there exists a y such that p(x, y). We even give such a y for free as
an additional input.

Thus, from the easily approximable minimization problem VERTEX COVER,
we obtain the unapproximable constrained maximization version: given a graph G
(V, E), S C_ V, a positive integer k, and a vertex cover of size at most k, find the
maximum of IS N C over vertex covers C of size at most k. This can be interpreted
as follows" the set S represents the important vertices; we can only afford a vertex
cover of size at most k but wish to use as many important vertices as possible.

For HAMILTONIAN CIRCUIT, this constrained version becomes the following:
given a graph G (V, E), a Hamiltonian circuit in G, and S c_ E, find the maximum
of IS C over Hamiltonian circuits C. This has a natural interpretation: a salesman
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has to visit all cities, and certain trips between cities are scenic or free, so he wants
to maximize the number of such trips.

1.4. Hyperunapproximability results. Not only are these versions hard to
approximate to within a factor of nc, but it is also hard to have any idea about the
order of magnitude of the solutions to these optimization problems. More specifically,
we show that any iterated logarithm of any of the above versions is hard to approx-
imate within a constant factor unless NP is recognized by slightly superpolynomial
randomized machines. (Slightly superpolynomial will be made precise in the next
paragraph.) The proof also does not rely on the fact that the iterated logarithm may
become 0 (or negative/; we can assume the iterated logarithm is at least 1. This result
extends the result in [22] that the logarithm of a(G is hard to approximate to within
any constant factor unless N/5 -/5.1

In order to state our results precisely, we define

log(e) n log log.., log n,

log(k) )
p,k(n) 22 / k 2’s,

Pe U
with analagous definitions for NPe, RPe, co-RPe, and ZPPe RPe A co-RPe. Note
that P1 P is polynomial time, P2 =/5 is quasi-polynomial time, and Pe for k > 2 are
other measures of slightly superpolynomial time. Also, let Fd denote the functional
version of the complexity class d. In particular, FZPPe corresponds to functions
computable by zero-error (Las Vegas) randomized algorithms that run in the appro-
priate expected time. For a function f, the notation (MAX CLIQUE) denotes the
problem of finding f(w(g)), and similarly for other optimization problems. We show
that if NPe : ZPPe, then no function in FZPPe approximates log(L) of any of
the above versions of NP-complete problems (e.g., MAX CLIQUE) to within any
constant factor.

These techniques can also be used to improve the constant e such that MAX
CLIQUE cannot be approximated to within a factor nc. Suppose c answer bits are
required by a PCP protocol to achieve error 1/2. We show that if NP : ZPP, then
for all e < 1/(c + 1), there is no Las Vegas algorithm running in expected polynomial
time which approximates MAX CLIQUE to within a factor n. Recently, much effort
has been devoted towards improving the constant (see, e.g., [6, 7]), and they all use
this lemma or an extension of it.

We point out that similar results may be obtained by using the randomized graph
product method of Berman and Schnitger [8]. However, such results would be under
the stronger assumption that NPe BPPe. The reason for this is that we look at the
proof-theoretic construction of the graphs in question, while Berman and Schnitger
use a straight reduction. We therefore need only deal with the error in the "easy" di-
rection, while Berman and Schnitger need to worry about the error in both directions.

This does not entirely improve upon [22]; here we show that logw(G) is hard to approximate
unless NP ZPP, a condition which, as far as we know, does not imply N/5 =/5.
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This difference also manifests itself in the derandomization: more work is needed to
derandomize the randomized graph product construction [2] than the basic tool used
to derandomize the proof-theoretic construction [1].

1.5. Implications for counting problems. We further show that under the
same assumption that NPk 7 ZPPk, log(k+l) of the number of satisfying assign-
ments to a monotone 2SAT formula is hard to approximate to within any constant
factor. That this is hard to approximate may seem surprising because finding a sat-
isfying assignment is trivial. In the case of a DNF formula, where finding a satisfying
assignment is also easy, approximating the number of satisfying assignments is in
randomized polynomial time [15].

As a corollary, we use Valiant’s reduction [21] to observe that approximating
log(k+l) of the permanent of a matrix with entries in {-1,0, 1} is hard under the
same assumption as above. We can assume the matrix has positive permanent be-
cause, conceivably, the problem of deciding if the permanent is 0 is NP-hard, which
would make the corollary uninteresting. This result should be contrasted with the
subexponential algorithm to approximate the permanent of 0,1-matrices [13].

2. The iterated log of max clique is hard to approximate. In this section,
we show that it is hard to approximate any iterated logarithm of the size of the
maximum clique. We first present the following definition.

DEFINITION 2.1. Approximating g(x) to within a factor a(n) is in FZTIME(t(n))
if there is a zero-error (Las Vegas) randomized algorithm which, on input x, runs
in expected time t(Ix[) and outputs such that g(x) is in the half-open interval
I [, a(Ix])). Here Ix denotes the length of x.

Thus the algorithm can distinguish between x and y, Ixl lYl n, if g(x) >_
a(n)g(y) or g(y) >_ a(n)g(x). 2

Our proofs closely follow the proofs of [11, 4, 3], building on the work of [5]. First,
here are some definitions from [4].

A verifier is a probabilistic polynomial-time probabilistic Turing machine M given
access to the input x, random bits y, and a proof H. The verifier’s goal is to decide
whether H is a valid proof that x is in some language L. We define the predicate
MI(x, y) to be true iff M accepts x given the proof II and random bits y.

DEFINITION 2.2. A verifier is (r(n), c(n))-restricted if on an input of size n it
uses at most r(n) random bits and queries at most c(n) bits of the proof.

DEFINITION 2.3. A language L is in the complexity class PCP(r(n),c(n)) iff
there is an (r(n), c(n))-restricted verifier such that

x e L (H)Pry[Mr(x, y)] 1,
x L (VH)Pry[MrI(x, y)] <: 1/2.

Arora et al. [3] give the following improvement of [5].
THEOREM 2.4 (see [3]). NP PCP(O(logn), O(1)).
Using this, they follow [11] and construct a graph Gx which has a large clique iff

x E L. In order to do this, they define transcripts and a notion of consistency among

2 Of course, our definition is also equivalent to the algorithm always outputting a number such
that g(x)/b([x[)

_
< b(Ix[)g(x), where b(n) . One might think it is natural to define

this as approximating to within a factor b(n); however, we want the property that the algorithm can
distinguish between g values that differ by an a(n) factor. Otherwise, we will get b(n)2 terms instead
of a(n) terms. Our definition is also like the ones used in [11, 3].
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them. A transcript is basically a set of queries to locations of the proof and the bits
that are found in these locations. Two transcripts are consistent if there is one proof
that can correspond to both transcripts.

DEFINITION 2.5 (see [11]). We say that (y, ql, al,..., qc, ac} is an (r, c)-transcript
for verifier M on x if lY] r, and on input x and random string y, for every i, M
queries bit location qi after receiving the answers aj to queries qj for j < i. The
transcript is accepting if on input x, random string y, and history of communication
(questions and answers) (ql, a,..., q, a), M accepts x.

DEFINITION 2.6 (see [11]). We say that two transcripts (y, q, a,..., q, a and
($, ql, all,..., [, de} are consistent if for every i, qi implies a d.

To decide whether x is in some NP language L, we construct a graph Gx based
on the (r(n) O(log n), c(n) O(1))-restricted verifier M for L. The vertices of Gx
are all accepting (r(n), c(n))-transcripts of M on x, and two nodes are connected iff
the corresponding transcripts are consistent. Thus Gx has at most 2r(n)+c(n) vertices.
The following result is also not hard to see.

LEMMA 2.7 (see [11]). w(Gx) maxn Pry[Mn(x, y)]. 2r(n).
In other words, (Gx) is the maximum over all proofs II of the number of random

strings on which M accepts x. Thus if x E L, then w(G) 2r(n), and if x

_
L, then

<
In order to get a wider separation in the clique sizes, Feige et al. constructed the

graph G corresponding to a protocol M. M runs log(1) n independent iterations
of M on x. This reduces the error probability if x L and therefore produces a wider
separation in the clique sizes.

Yet once we fix a proof II, MIx basically corresponds to a co-RP machine: always
accepting when x E L and usually rejecting if x L. Thus it is natural to use pseudo-
random strings that efficiently amplify the success probability of an RP (or co-RP)
algorithm. Indeed, this was the idea used in [22] to show that approximating log w is
hard. Arora et al. [3] later used this idea to achieve their result as well.

But since we will cycle through all possibilities of the random seeds, the pseudo-
random strings do not have to be constructible in the usual sense. In fact, the best
amplification schemes are given by random graphs, which are so-called "dispersers"
with high probability. Thus our plan will be to use a random amplification scheme.

DEFINITION 2.8. An (R,r,d)-amplification scheme is a bipartite graph H
({0, 1}R U {0, 1}r, E), where {0, 1}R and {0, 1 } are independent sets and the degree
of every node in {0, 1}R is d.

An (R, r, d)-amplification scheme defines a pseudorandom generator that takes as
input an R-bit string z and outputs the d r-bit neighbors of z. A good amplification
scheme has been called a disperser [9].

DEFINITION 2.9. An (m, n, d, a, b)-disperser is a bipartite graph with m nodes on
the left side, each with degree d, and n nodes on the right side such that every subset
of a nodes on the left side has at least b neighbors on the right.

We pick an (R, r, d)-amplification scheme uniformly at random by choosing in-
dependently, for each u {0, 1}R, d uniformly random elements from {0, 1}r as the
neighbors of u. Santha [19] and Sipser [20] have shown that a random amplification
scheme is a disperser. In order to get the optimal e in the n results, we use an
extremely minor modification of their arguments.

LEMMA 2.10. The probability that a uniformly random (R, r, R+ 2)-amplification
scheme is a (2R, 2, R + 2, 2r, 2-l)-disperser is greater than 1 2-2

Proof. We basically follow [20]. For S C_ {0, 1}R, T C_ {0, 1}r, let A,T be the
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event that all neighbors of S are in T. Then the probability that the amplification
scheme is not the desired disperser equals

Pr
(R+2)2

The unapproximability of the iterated log will follow from the following lemma.
LEMMA 2.11. Let L E PCP(r(n) O(logn),c). Let R R(n) be a function

of n, and let N N(n) 2R+(R+2)c. If there is a Las Vegas algorithm running in
expected time t(N) which can correctly determine whether a graph with at most N
nodes has a clique of size at least 2R or at most 2, then L co-RTIME(t(N(n)) +

Proof. We describe a randomized algorithm A to recognize L. Let x be the
input. Let M be the (r r(n), c)-restricted verifier accepting L. A picks a uniformly
random (R, r, R + 2)-amplification scheme H. Define the verifier V as the machine
which picks a uniformly random R-bit string, determines its neighbors Yl,..., YR+2
in H, and simulates M on x with the random strings yl,..., YR+2. V accepts iff all
R + 2 runs of M accept. Note that V uses R random bits and dc (R + 2)c answer
bits. A constructs G corresponding to V. Then G has at most N 2R+(R+2)c

vertices. Observe that if x L, then co co(G) 2R. Now consider if x L. Let
H be an arbitrary proof. With overwhelming probability (in particular, at least 5/6),
H is a (2R,2,d, 2,2-)-disperser. Since less than 2- r-bit strings cause M to
accept, by the disperser property of H, at most 2 R-bit strings cause V to accept.
Thus w < 2.

Let B be a Las Vegas algorithm running in expected time t(N) which correctly
determines whether co >_ 2R or co <_ 2r. A simulates B for 3t(N) steps (in which time
B fails to halt with probability at most 1/3). If B doesn’t halt or determines that
co >_ 2R, then A accepts. Otherwise, A rejects. Thus A always accepts if x L and
with probability >_ 5/6- 1/3 rejects if x L. A runs in time O(t(N)+ p(N)), where
p is a polynomial depending on the running time of M.

We also make use of a complexity-theoretic lemma.
LEMMA 2.12. For any positive integer k, NP C_ co-RPk iff NPk ZPPk.
Proof. One direction is easy: if NPk ZPPk, then NP

co-RPk. Now assume NP c_ co-RPk. Since Pd,k(Pe,k(n)) <_ Pdc,k(n), this implies that
NPk C_ co-RPk. Taking complements, we get co-NPk C_ RPk. But then NPk
co-RPk c_ co-NPk C_ RPk c_ NPk. Thus all containments are equalities and NPk
RPk co-RPk; hence NPk ZPPk.

We can now show the following.
THEOREM 2.13. If for any constant a approximating log(k) co to within a factor a

is in FZPPk, then NPk ZPPk.
Proof Let L e PCP(r(n) O(logn),c) be NP-complete. Set R p,k-(r)

and apply Lemma 2.11. Suppose there is an algorithm A approximating log(k) w to
within a factor a. Since log(k) 2R a. log(k) 2r, A can determine whether co > 2R or
co <_ 2 in a graph on N 2R+(R+2)c vertices. For n large enough so that R >_ 2c,
N <_ 2(c+2)R 2(c+2)p,-(r) 2(c+2)p,-(lgn) P@+2),k(n). Thus, for some
constant e, A runs in time pe,k(N) <_ Pe(+2),k(n) on inputs of length n. Lemma
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2.11 now implies the theorem, except that the conclusion is NP C_ co-RPk instead of
NPk ZPPk. Lemma 2.12 shows that these conclusions are equivalent. [:l

Similarly, we improve the constant e in the n of the MAX CLIQUE unapprox-
imability results of [3].

THEOREM 2.14. Let c be a constant such that some NP-complete language is in
PCP(O(logn), c) (which exists by Theorem 2.4). Then for any constant e < 1/(c+ 1),
there is no Las Vegas algorithm running in expected polynomial time that approximates
MAX CLIQUE to within a factor n unless NP-- ZPP.

Proof. Choose k large enough so that (k- 1)/(k + (k + 2)c) :> e, and let R kr.
By Lemma 2.11, w cannot be approximated to within a factor of 2R-r in a graph
with N 2R+(R+2)c vertices unless NP C_ co-PP. By our choice of R, this factor
is at least N. Moreover, by Lemma 2.12, NP C_ co-RP is equivalent to NP
ZPP. D

3. Unapproximable versions of NP-complete problems. We now modify
Karp’s list of 21 NP-complete problems to obtain versions that are hard to approxi-
mate. Problems 4 and 11 had previously been shown to be as difficult to approximate
as MAX SAT [17].

THEOREM 3.1. For each of the following maximization problems A, there exists a
constant > 0 such that A cannot be approximated to within a factor n in polynomial
time unless P NP. For any positive constant c, any positive integral k, and any of
the following maximization problems A, approximating log(k) (A) to within a factor of
c is not in FZPP unless NPk ZPP.

1. CONSTRAINED MAX SAT
See MAX 2ANLSAT.

2. MAX 0-1 INTEGER PROGRAMMING
Input: integer matrix C and integer vector d
Output: the maximum, over all 0-1 vectors x such that Cx >_ d, of the
number of l’s in x.

3. MAX CLIQUE
Input: undirected graph G
Output: the maximum number of vertices in a clique.

4. MAX SET PACKING
Input: family of finite sets {Sj}, j e (1,..., n}
Output: the maximum, over all I c_ {1,... ,n} such that the Si,i E I are
disjoint, of

5. CONSTRAINED MAX VERTEX COVER
Input: undirected graph G (V, E), S c_ V, and a vertex cover of size k
Output: the maximum, over vertex covers C of size k, of IC

6. CONSTRAINED MAX SET COVERING
Input: family of finite sets {Si}, 1,..., n, T C_ {1,..., n}, and a subcover
of size k (i.e., J c_ {1,...,n}, IJI k, such that UjjSj
Output: the maximum, over subcovers C of size k, of

7. CONSTRAINED MAX FEEDBACK NODE SET
Input: digraph G (V, E), S C_ V, and a feedback node set of size k (i.e., a
subset R c_ V of size k that contains a vertex of every directed cycle)
Output: the maximum, over feedback node sets C of size k, of
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10.

11.

12.

13.

14.

15.

16.

17.

18.

CONSTRAINED MAX FEEDBACK ARC SET
Input: digraph G (V, E), S

_
E, and a feedback arc set of size

subset R C_ E of size k that contains an edge of every directed cycle)
Output: the maximum, over feedback arc sets C of size k, of

CONSTRAINED MAX DIRECTED HAMILTONIAN CIRCUIT
Input: digraph G (V, E), S C_ E, and a Hamiltonian circuit in G
Output: the maximum, over Hamiltonian circuits C
CONSTRAINED MAX HAMILTONIAN CIRCUIT
Input: undirected graph G- (V, E), S c_ E, and a Hamiltonian circuit in G
Output" the maximum, over Hamiltonian circuits C
MAX 2ANLSAT
Input: 2CNF formula F with all variables negated
Output: the maximum, over all satisfying assignment x, of the number of
variables set to "true" in x.

CONSTRAINED MAX CHROMATIC NUMBER
Input: graph G (V, E), v E V, S

_
V, and a k-coloring of G

Output: the maximum, over all k-colorings C of G, of IC SI, where C is
the set of vertices in the same color class as v in C.
CONSTRAINED MAX CLIQUE COVER
Input: graph G (V, E), v0 E V, S c_ V, and a clique cover of G of size at
most k, i.e., a representation of G as the union of at most k cliques
Output: the maximum, over all clique covers C of G of size at most k, of

IC SI, where C is the clique containing v in C.
CONSTRAINED MAX EXACT COVER
Input: family of finite sets {S}, 1,...,n, T C_ {1,...,n}, and an exact
cover (i.e., J c_ {1,..., n} such that the Sj, j J are disjoint, and UjjSj
u_S)
Output: the maximum, over exact covers C, of

CONSTRAINED MAX HITTING SET
Input: family of subsets {Si} of {i- 1,..., n}, T C_ {1,..., n}, and a hitting
set (i.e., W C_ {1,...,n} such that for all i, [W N {1,...,n}l 1)
Output: the maximum, over hitting sets C, of IC TI.
CONSTRAINED MAX STEINER TREE
Input: undirected graph G- (V, E), S c_ E, and a Steiner tree of weight
at most k with respect to R c_ V and weighting function w" E
subtree of weight at most k containing the set of nodes in R)
Output: the maximum, over Steiner trees T C_ E of weight at most k with
respect to/7 and w, of IT A S I.
CONSTRAINED MAX THREE-DIMENSIONAL MATCHING
Input: hypergraph H (V,F), F C_ V V V, S c_ F, and a three-
dimensional matching (i.e., M c_ F, IMI IVI, and no two elements of M
agree in any coordinate)
Output: the maximum, over three-dimensional matchings N, of IN
CONSTRAINED MAX KNAPSACK
Input: (a.,a2,...,an) Zn, T c_ {1,...,n}, and a knapsack of size b (i.e.,
an S c_ {1,...,n}, Eyes ay b)
Output: the maximum, over knapsacks C of size b, of
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19. CONSTRAINED MAX JOB SEQUENCING
Input: "execution time vector" (T1,..., Tn) E Zn

"deadline vector" (D1,..., Dn) E Z
"penalty vector" (P1,..., P) Zn

S c_ {1,..., n} and a schedule (permutation) r with penalty at most
k, i.e.,

E[if Tr(1 --’’’ - T(j) > D(j) then PT(j) else 0]

_
k

J

20.

21.

Output: the maximum, over schedules with penalties of at most k, of the
number of jobs in S completed by the deadline.

CONSTRAINED MAX PARTITION
Input: (a,a2,...,an) Z, k {1,...,n}, T C_ {1,...,n}, and an equal
partition (i.e., an S
Output: the maximum, over equal partitions C with k

CONSTRAINED MAX CUT
Input: undirected graph G (V, E), v E V, T C_ V, and a cut of weight at
least W with respect to the weighting function w V Z (i.e., a set S c_ V
such that

w)

Output: the maximum, over cuts C of weight at least W with v C, of

Note that the above languages are all of the following similar form. Let p be
a polynomial-time predicate corresponding to an NP language L so that x L iff
(3y {0, 1})p(x,y), where m is polynomial in n. Let S c_ {1,... ,m}, and view
y as a subset of {1,..., m}. Then the maximization problems above correspond to
maximizing IS c Yl over y such that p(x, y), given such a y.

We now consider when reductions between two such maximization problems pre-
serve the difficulty of approximation.

LEMMA 3.2. Suppose L is a language of the above form, where approximating
/ max{IS Yl}, given some y such that p(x, y), to within a factor n is hard for
some e > 0, and approximating log(k)/ to within any constant factor is hard. Let q
be a polynomial-time reduction such that x L iff x q(x) LI; moreover, given y
such that p(x, y) in polynomial time, one can compute y’ such that p’(x’, y’). Suppose
that there is an S c_ {1,...,rn} such that

Then approximating/’ max{IS’ Vy’l} given some y’ such that p’(x’, y’), to within a

factor n’ is hard for some > O, and approximating log(k)/ to within any constant
factor is hard.

Proof. The lemma follows because ’=/ and Ix’l poly(Ix]). V1

We can now prove the theorem. We first observe as in [17] that approximating
MAX 2ANLSAT is as hard as approximating MAX CLIQUE.
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LEMMA 3.3 (see [17]). For any functions f and g, approximating f(MAX CLIQUE)
to within a factor g(n) is polynomial-time reducible to approximating f(MAX 2ANLSAT)
to within a factor g(n).

Proof. The proof is contained in the proof of Theorem 4.1.

Proof of Theorem 3.1. We basically use the sequence of reductions given by
Karp [14] that the unconstrained versions of the above problems are NP-complete.
Lemma 3.3 tells us that the constrained version of 2SAT is hard to approximate.
Moreover, for 2SAT, we can easily compute a satisfying assignment if one exists.
Next, for most of the problems above, we can look at the reductions in [14] and verify
that they satisfy the conditions of Lemma 3.2. There are some reductions, however,
for which the reductions in [14] will not work. For example, Karp reduces CLIQUE to
VERTEX COVER by taking complements. This would yield a minimization problem.
Instead, we use the reduction given in [12] which goes directly from 3SAT, and we
can let S be the subset of vertices which Garey and Johnson call u.

To show the result for HAMILTONIAN CIRCUIT requires some care. We modify
the reduction given in [12] reducing VERTEX COVER to HAMILTONIAN CIRCUIT.
We briefly outline their reduction. Say we have an instance of VERTEX COVER:
a graph G (V, E) and an integer k. They construct G’= (V’, E’) as follows. V’
consists of k "selector vertices" A {al,..., ak} plus other vertices corresponding to
edges in G. E is constructed in such a way that G has a Hamiltonian circuit if[ G
has a vertex cover of size k. Each a has the same adjacency list, and there are no
edges between any two a.

Our reduction is from MAX INDEPENDENT SET to CONSTRAINED MAX
HAMILTONIAN CIRCUIT. Given an instance G (V, E), IVI n, of MAX IN-
DEPENDENT SET, construct G using the reduction from VERTEX COVER above
with the parameter k n. Form G" by adding the edges {a, aj} for each pair of
selector vertices (a, aj), < j. Let S be the edges {a, aj} of this clique A. Since there
is always a vertex cover of size n in G, there will always be a Hamiltonian circuit C in
G and hence in G’. The construction of [12] ensures that C can be found efficiently.
The input to CONSTRAINED MAX HAMILTONIAN CIRCUIT is G", S, and C.

We show that the output of CONSTRAINED MAX HAMILTONIAN CIRCUIT
is (, the size of a maximum independent set in G. That is, we show that there is a
Hamiltonian circuit passing through a edges of S and no Hamiltonian circuit passing
through a + 1 edges of S. We use the fact that the size of a minimum vertex cover
is n- a. Since there is a vertex cover of size n- a in G, there is a Hamiltonian
circuit in G" which passes through a edges in S. Namely, this is the Hamiltonian
circuit in [12] with an- replaced by the path an-, an-+l,..., an. Note that we
can make this replacement since each a is connected to the same vertices outside A.
Conversely, suppose there is a Hamiltonian circuit in G" passing through a + 1 edges
in S. Since each a has the same adjacency list outside A, by contracting these edges,
we see that there is a Hamiltonian circuit passing through n-c- 1 selector vertices
in the original construction of [12], and hence there is a vertex cover of size n-a- 1,
a contradiction.

4. Two unapproximable counting problems. In this section, we show how
difficult it is to approximate the number of satisfying assignments to a monotone
2CNF formula or, equivalently, a 2CNF formula where all variables are negated. As
a corollary, we deduce the hardness of approximating the permanent of a matrix with
{- 1, 0, 1} entries.
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THEOREM 4.1. There exists > 0 such that if the log of the number of satisfying
assignments to a monotone 2CNF can be approximated to within a factor of n, then
NP P. If, for some constant a, approximating log(k+l) of the number of satisfying
assignments to a monotone 2CNF to within a factor a is in FZPPk, then NP
ZPP

Proof. The proof extends the reduction in [17]. Let G ({1,..., n}, E) be a graph
with maximum clique size co > 1, and consider the formula F A{i,j}E(2i V aj).
Viewing an assignment x as a subset Sx of {1,..., n}, we see that x satisfies F iff Sx
forms a clique in G. Thus the number N of satisfying assignments to F is equal to
the number of cliques in G. Since any subset of the max clique is a clique, N >_ 2.
Since each clique has size at most co,

N< + +...+

Therefore, co _< lg N < co lg n, so lgN lg n _< co <_ lg N. Thus if lg N can be approx-
imated to within a factor a, then co can be approximated to within a factor a lg n.
Observing that the additional lg n factor is negligible in the proof of Theorem 2.13
completes the proof. Cl

As a corollary, using Valiant’s reduction [21], we can show that computing the
permanent of matrices with entries in {-1, 0, 1} is hard.

COROLLARY 4.2. If the log of the permanent of a matrix having positive per-
manent and entries in {-1, 0, 1} can be approximated to within a factor of n, then
NP P. If, for some constant a, approximating log(+1) of the permanent of a
matrix having positive permanent and entries in {-1, 0, 1} to within a factor a is in
FZPP, then NPk ZPP.

Proof. Valiant [21] showed that the number of satisfying assignments to a 3CNF
formula, and hence a 2CNF formula, can be expressed as the permanent of a -1, 0,
1 matrix. El
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