
10

Memory Scheduling for Modern
Microprocessors

IBRAHIM HUR

The University of Texas at Austin and IBM Corporation

and

CALVIN LIN

The University of Texas at Austin

The need to carefully schedule memory operations has increased as memory performance has
become increasingly important to overall system performance. This article describes the adaptive
history-based (AHB) scheduler, which uses the history of recently scheduled operations to provide
three conceptual benefits: (1) it allows the scheduler to better reason about the delays associated
with its scheduling decisions, (2) it provides a mechanism for combining multiple constraints, which
is important for increasingly complex DRAM structures, and (3) it allows the scheduler to select
operations so that they match the program’s mixture of Reads and Writes, thereby avoiding certain
bottlenecks within the memory controller.

We have previously evaluated this scheduler in the context of the IBM Power5. When compared
with the state of the art, this scheduler improves performance by 15.6%, 9.9%, and 7.6% for the
Stream, NAS, and commercial benchmarks, respectively. This article expands our understanding
of the AHB scheduler in a variety of ways. Looking backwards, we describe the scheduler in the
context of prior work that focused exclusively on avoiding bank conflicts, and we show that the
AHB scheduler is superior for the IBM Power5, which we argue will be representative of future
microprocessor memory controllers. Looking forwards, we evaluate this scheduler in the context
of future systems by varying a number of microarchitectural features and hardware parameters.
For example, we show that the benefit of this scheduler increases as we move to multithreaded
environments.

Categories and Subject Descriptors: C.1.1 [Processor Architectures]: Single Data Stream
Architectures

General Terms: Performance

Additional Key Words and Phrases: Memory system performance, memory scheduling, adaptive
history-based scheduling

This research was supported by NSF grants ACI-9984660 and CNS-0509354 and an IBM Faculty
Partnership Award.
Authors’ addresses: I. Hur and C. Lin, The University of Texas at Austin, Department of Computer
Sciences, 1 University Station C0500, Austin, TX 78712; email: {ihur,lin}@cs.utexas.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 0738-2071/2007/12-ART10 $5.00 DOI 10.1145/1314299.1314301 http://doi.acm.org/
10.1145/1314299.1314301

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

10:2 • I. Hur and C. Lin

ACM Reference Format:
Hur, I. and Lin, C. 2007. Memory scheduling for modern microprocessors. ACM Trans. Com-
put. Syst. 25, 4, Article 10 (December 2007), 36 pages. DOI = 10.1145/1314299.1314301
http://doi.acm.org/10.1145/1314299.1314301

1. INTRODUCTION

Memory bandwidth is an increasingly important aspect of overall system per-
formance. Early work in this area has focused on streaming workloads, which
place great stress on the memory system. Early work has also focused on
avoiding bank conflicts, since bank conflicts typically lead to long stalls in the
DRAM. In particular, numerous hardware and software schemes have been
proposed for interleaving memory addresses [Cragon 1996], skewing array ad-
dresses [D. T. Harper and Jump 1986; Gao 1993], and otherwise [McKee 1993,
1995; McKee et al. 1998; Carter et al. 1999; McKee et al. 2000] attempting
to spread a stream of regular memory accesses across the various banks of
DRAM.

Previous work [Valero et al. 1992; Peiron et al. 1995] describes a method of
dynamically reordering memory commands so that the banks are accessed in
a strict round-robin fashion. More recent work [Rixner et al. 2000] evaluates
a set of heuristics for reordering memory commands, some of which consider
additional DRAM structure, such as the rows and columns that make up banks.
Rixner et al. do not identify a conclusive winner among their various heuristics,
but they do find that simply avoiding bank conflicts performs as well as any of
their other heuristics.

Recently, the need for increased memory bandwidth has begun to extend
beyond streaming workloads. Faster processor clock rates and chip multipro-
cessors increase the demand for memory bandwidth. Furthermore, to cope with
relatively slower memory latencies, modern systems increasingly use tech-
niques that reduce or hide memory latency at the cost of increased memory
traffic. For example, simultaneous multithreading hides latency by using mul-
tiple threads, and hardware-controlled prefetching speculatively brings in data
from higher levels of the memory hierarchy so that it is closer to the processor.
To provide more parallelism, and hence more bandwidth, modern DRAM’s are
also increasing in complexity. For example, the DDR2-533 SDRAM chips have
a 5D structure and a wide variety of costs associated with access to the various
sub-structures.

In the face of these technological trends, previous solutions are limited in
three ways. First, it is no longer sufficient to focus exclusively on streams as
a special case; we instead need to accommodate richer patterns of data access.
Second, it is no longer sufficient to focus exclusively on avoiding bank conflicts;
scheduling decisions instead need to consider the other physical substructures
of increasingly complex DRAM’s. Third, as memory controllers themselves be-
come more complex, it also becomes important for schedulers to avoid bottle-
necks within the memory controller itself.

To understand this third problem, consider the execution of the daxpy kernel
on the IBM Power5’s memory controller. As shown in Figure 1, this memory

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

Memory Scheduling for Modern Microprocessors • 10:3

Fig. 1. The Power5 memory controller.

controller sits between the L2/L3 caches and DRAM; it has two reorder queues
(the Read Queue and the Write Queue), a scheduler that selects operations
from the reorder queues, and a FIFO Centralized Arbiter Queue, which buffers
operations that are sent to DRAM. The daxpy kernel performs two Reads for
every Write, so if the scheduler does not schedule memory operations in the ratio
of two Reads per Write, either the Read queue or the Write queue will become
saturated under heavy traffic, creating a bottleneck. To avoid such bottlenecks,
the scheduler should select memory operations so that the ratio of Reads and
Writes matches that of the application.

In this article, we describe a new approach—adaptive history-based memory
scheduling—that addresses all three limitations by maintaining information
about the state of the DRAM along with a short history of previously sched-
uled operations. Our solution avoids bank conflicts by simply holding in the
reorder queue any command that will incur a bank conflict; history informa-
tion is then used to schedule any command that does not have a bank conflict.
Our approach provides three conceptual advantages: (1) it allows the sched-
uler to better reason about the delays associated with its scheduling deci-
sions, (2) it is applicable to complex DRAM structures, and (3) it allows the
scheduler to select operations so that they match the program’s mixture of
Reads and Writes, thereby avoiding certain bottlenecks within the memory
controller.

We have previously [Hur and Lin 2004, 2006; Hur 2007] introduced the
adaptive history-based (AHB) memory scheduler and evaluated it in the con-
text of the IBM Power5. Since then, a version of the AHB scheduler that uses
one bit of history and that is tailored for a fixed Read-Write ratio of 2:1 has
been implemented in the recently shipped IBM Power5+. Nevertheless, im-
portant questions about the AHB scheduler still exist. Perhaps the most im-
portant question is whether its utility will become more or less important to
future systems, which we study by altering various architectural parameters
of the processor, the memory system, and the memory controller. For exam-
ple, is the AHB scheduler effective for multithreaded and multicore systems?
Is the AHB scheduler needed for DRAM’s that will have many more banks
and thus much more parallelism? If we increase the size of the memory con-
troller’s internal queues, would a simpler solution suffice? Finally, can the solu-
tion be improved by incorporating more sophisticated methods of avoiding bank
conflicts?

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

10:4 • I. Hur and C. Lin

In this article, we answer these questions and others to demonstrate the
flexibility and robustness of the AHB scheduler, evaluating it in a variety of
situations. In particular, this article makes the following contributions:

—We identify three aspects of the memory scheduling problem: (1) How to
schedule bank operations, (2) what to do when a bank conflict arises, and
(3) how to avoid bottlenecks in the Read and Write reorder queues? Most pre-
vious work focuses on the first aspect; Rixner et al. [2000] introduce heuristics
for dealing with all three aspects; and we study this space more thoroughly,
presenting evidence that a simple solution to the second question obviates
the need to answer the first question.

—We show that multithreaded workloads increase the performance benefit of
the AHB scheduler. This result may be surprising because multithreading
would seem to defeat the scheduler’s ability to match the workload’s mixture
of Reads and Writes. However, we find that the increased memory system
pressure increases the benefit of smart scheduling decisions.

—We find the somewhat surprising result that for previous memory schedulers,
the use of SMT processors can actually decrease performance because the
DRAM becomes a bottleneck.

—We evaluate the AHB scheduler on a set of commercial benchmarks. When
compared with the state of the art on a two processor system each running
two threads, the AHB scheduler improves performance between 6.5% and
9.5%.

—We tune the AHB scheduler and evaluate its sensitivity to various internal
parameters. For example, we find that the criterion of minimizing expected
latency is more important than of matching the expected ratio of Reads and
Writes.

—We show that the benefits of the AHB scheduler tend to be more valuable in
future systems. In addition to the multithreading results, we show that the
AHB scheduler performs well as we alter various memory controller para-
meters, DRAM parameters, and system parameters.

—We present results for the more advanced DDR2-533 SDRAM and with the
processor frequency of the most recent Power5+ systems.1

—We explore the effects of varying parameters of the memory scheduler itself.
We find that the AHB scheduler provides significant benefits in performance
and hardware costs when compared with other approaches. In many cases,
our technique is superior to other approaches even when ours is given a
fraction of the resources of the others.

This article is organized as follows. The next section summarizes prior work.
Section 3 describes the IBM Power5 architecture and its memory system, which
is useful for understanding our solution, which we present in Section 4. We

1The results in this article differ slightly from those presented previously [Hur and Lin 2004,
2006], since this article uses the architectural parameters of the Power5+ instead of the Power5.
In addition to various architectural differences, the Power5+ has a higher processor frequency and
uses faster DRAM chips.

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

Memory Scheduling for Modern Microprocessors • 10:5

present our experimental methodology in Section 5, followed by our experiment
evaluation in Sections 6 and 7. Finally, we discuss the hardware costs of our
solution in Section 8, and we provide concluding remarks in Section 9.

2. RELATED WORK

Memory systems are typically organized as multiple banks that can be ac-
cessed simultaneously. By implementing some sort of interleaving [Cragon
1996], banked memory systems can considerably improve bandwidth, as long
as bank conflicts—concurrent accesses to the same bank—are avoided. Tech-
niques for eliminating bank conflicts have been studied for several decades,
and the techniques can be divided into two broad classes: static approaches and
dynamic approaches.

Static bank conflict avoidance techniques, such as skewing [D. T. Harper and
Jump 1986; Gao 1993], prime memory systems [Raghavan and Hayes 1990; Rau
1991], or compiler transformations [Moyer 1993] attempt to arrange the order
of memory commands to minimize bank conflicts. These static methods are
effective for reducing only intra-stream bank conflicts, that is, conflicts caused
by a single stream.

Dynamic conflict avoiding techniques [Valero et al. 1992; Peiron et al. 1995;
Carter et al. 1999] can alleviate both intra- and inter-stream (conflicts among
multiple streams) bank conflicts. As an example, the Impulse memory sys-
tem [Carter et al. 1999] improves memory performance by dynamically remap-
ping physical addresses, but it requires modifications to the applications and
the operating system.

Hardware techniques that do not require operating system support include
the various heuristics that have been proposed to reorder memory commands,
including a memory reordering technique [Valero et al. 1992; Peiron et al.
1995] that dynamically eliminates bank conflicts by enforcing a strict round
robin ordering of bank accesses. This ordering maximizes the average distance
between any two consecutive accesses to the same bank and thus reduces the
stalls due to bank conflicts. This approach can only eliminate bank conflicts if
the requests are fairly uniformly distributed among banks.

Because of their technical context—bank conflicts were the only issue for
older memory systems—all of the preceding studies focus exclusively on bank
conflicts. Many of these approaches are complementary to ours, so an AHB
scheduler could use these methods as another optimization criteria. For exam-
ple, to break ties when there are multiple commands in the reorder queues to
choose from, an AHB scheduler could select the command that matches a prede-
termined sequence of bank accesses rather than choosing the oldest command.

McKee et al. [McKee 1993, 1995; McKee et al. 1998, 2000], Mathew et al.
[Mathew et al. 2000a, 2000b; Mathew 2000], and Rixner et al. [Rixner et al.
2000; Khailany et al. 2001; Rixner 2004] were the first to recognize the impor-
tance of moving beyond bank conflict avoidance.

McKee et al.’s Stream Memory Controller (SMC) [McKee 1993, 1995; McKee
et al. 1998, 2000] maximizes bandwidth for streaming applications. The SMC
design includes three main components: stream buffers, caches, and a memory

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

10:6 • I. Hur and C. Lin

command scheduler. The compiler detects streams in the code and generates
noncacheable memory requests that bypass caches at run time and go directly
to the stream buffers. The memory scheduler dynamically selects commands
from either the stream buffers or from the caches. The SMC system addresses
two issues in reordering commands: selecting the memory bank to which the
next access to schedule, and selecting the buffer which has a command for
that particular bank. In the SMC work, McKee et al. focus on three aspects
of memory system performance: hitting the hot row, avoiding bank conflicts,
and avoiding switching between Reads and Writes. They examine and eval-
uate various dynamic ordering heuristics, but they do not propose a specific
algorithm.

Mathew et al. [Mathew et al. 2000a, 2000b; Mathew 2000] present a heuris-
tic, which they evaluate using streaming workloads, to maximize row hits in
open-page memory systems. Rixner et al. [Rixner et al. 2000; Khailany et al.
2001; Rixner 2004] explore the benefits of various heuristics for reordering ac-
cesses for both streaming workloads [Rixner et al. 2000; Khailany et al. 2001]
and Web applications [Rixner 2004]. Each of these heuristics reorders memory
operations by considering the characteristics of modern DRAM systems and
modern memory controllers. For example, one policy gives row accesses prior-
ities over column accesses, and another gives column accesses priorities over
row accesses. None of these simple policies is shown to be best in all situations,
and none of them uses the command history when making decisions. Further-
more, these policies are not easily extended to more complex memory systems
with a large number of different types of hardware constraints.

3. BACKGROUND

This section describes the technical context for our work. We first describe the
IBM Power5 chip, including its memory controller; we then describe the Power5
memory system; and finally, we argue why other modern memory controllers
are likely to have organizations that are similar to that of the Power5.

3.1 The IBM Power5

The IBM Power5 [Clabes et al. 2004; Kalla et al. 2004] is the successor to the
Power4 [Tendler et al. 2002]. The Power5 chip has 276 million transistors and is
designed to address both scientific and commercial workloads. Some improve-
ments in the Power5 over the Power4 include a larger L2 cache, simultaneous
multithreading, power-saving features, and an on-chip memory controller.

The Power5 has two processors per chip, where each processor has split first-
level data and instruction caches. Each chip has a unified second-level cache
shared by the two processors, and it is possible to attach an optional L3 cache.
Four Power5 chips can be packaged together to form an 8-way SMP, and up
to eight such SMP’s can be combined to create 64-way SMP scalability. The
Power5 has hardware data prefetching units that prefetch from memory to the
L2 cache, and from the L2 cache to the L1 cache.

Each chip has a single memory controller with two reorder queues: a Read
Reorder Queue and a Write Reorder Queue (see Figure 1). Each of these queues

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

Memory Scheduling for Modern Microprocessors • 10:7

can hold 8 memory references, where each memory reference is an entire L2
cache line or a portion of an L3 cache line. A scheduler selects an appropriate
command from these queues to place in the Centralized Arbiter Queue (CAQ),
where they are sent to memory in FIFO order. The memory controller can keep
track of the 12 previous commands that were passed from the CAQ to the
DRAM.

The Power5 does not allow dependent memory operations to enter the mem-
ory controller at the same time, so the scheduler is allowed to reorder mem-
ory operations arbitrarily. Furthermore, the Power5 gives priority to demand
misses over prefetches, so from the processor’s point of view, all commands in
the reorder queues are equally important. Both of these features greatly sim-
plify the task of the memory scheduler.

3.2 The Power5 Memory System

The Power5 systems that we consider use DDR2-533 SDRAM chips [Micron
2004] (our earlier work [Hur and Lin 2004] uses the older DDR2-266 chips),
which have a 5D structure. Two ports connect the memory controller to the
DRAM. The DRAM is organized as 4 ranks, where each rank is an organiza-
tional unit consisting of 4 banks. Each bank in turn is organized as a set of rows
and columns. This structure imposes many different constraints. For example,
port conflicts, rank conflicts, and bank conflicts each incur their own delay (see
Section 5.3 for details), and the costs of these delays depends on whether the
operations are Reads or Writes. In this system, bank conflict delays are an order
of magnitude greater than the delays introduced by rank or port conflicts.

3.3 Modern Memory Controller Design

To understand the relevance of our work to other systems, it is worth asking
whether the Power5’s memory controller design is representative of other mod-
ern memory controllers. Thus, this section takes a closer look at the Power5’s
memory controller in an attempt to understand whether it is likely to be rep-
resentative of other modern memory controllers.

We begin by examining the decision to use separate Read and Write reorder
queues instead of a single unified reorder queue. A single reorder queue al-
lows for a simpler scheduler, one that does not need to balance the fullness
of the two queues. However, there are two advantages of segregated queues.
(1) The decoding logic required to select a command from the queue depends
on the length of the queue, so for a given capacity, a single longer queue re-
quires more logic and greater decoding time than two shorter queues. For ex-
ample, for a particular implementation of the Power5, it was not possible to
increase the number of entries in the Read reorder queue by 20% because the
increased logic would prevent the decoding from completing in a single clock
cycle. In other words, the Read reorder queue was already as large as it could be.
(2) The elements of the Read and Write reorder queues are processed differently,
so it takes considerably less hardware to implement two separate queues, each
specialized to its own use, than to implement a single queue in which each entry
can perform either duty.

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

10:8 • I. Hur and C. Lin

Most vendors do not provide details of their memory controller designs, but
since 2000, there have been a number of patents [Foster 2000; Harriman et al.
2000; Larson 2001; Kessler et al. 2003; Jenne and Olarig 2003; Harris 2003;
McGee and Chau 2005; Sah et al. 2006] by vendors such as Sun Microsystems,
Intel, Hewlett-Packard, Compaq, and Micron, that refer to segregated Read
and Write reorder queues, so we conclude that other vendors have made the
same design choices as IBM to use segregated reorder queues.

As we look to the future, we expect segregated reorder queues to become
more common. With multiple threads and multiple cores on a chip, the demand
for memory bandwidth will continue to increase. To satisfy this demand, there
is pressure to increase reorder queue capacity, and because of constraints on
decoding latency, the only way to increase capacity is to use multiple queues. In
fact, we believe that future memory controllers will see more than two reorder
queues, perhaps including separate queues for prefetches, and perhaps further
segregating the Read reorder queues and the Write reorder queues.

We now turn to the third queue, the CAQ. The primary benefit of this FIFO
queue is to allow a greater number of commands to reside in the memory con-
troller so that the CPU does not have to stall as often when DRAM bandwidth
cannot keep up with memory command bandwidth. Of course, this queue does
not have to be a FIFO queue, but the Power5 designers chose such a queue to
reduce hardware complexity.

We conclude that the Power5’s memory controller is likely to be representa-
tive of other modern memory controllers in its use of multiple internal queues,
and we believe that future memory controllers will become increasingly complex
as more queues are added. This trend will complicate the memory scheduler’s
task, as it will need to avoid multiple internal bottlenecks.

4. ADAPTIVE HISTORY-BASED MEMORY SCHEDULERS

This section describes our new approach to memory controller design, which
focuses on making the scheduler both history-based and adaptive. A history-
based scheduler uses the history of recently scheduled memory commands when
selecting the next memory command. In particular, a finite state machine en-
codes a given scheduling goal, where one goal might be to minimize the latency
of the scheduled command and another might be to match some desired bal-
ance of Reads and Writes. Because both goals are important, we probabilisti-
cally combine two FSM’s to produce a scheduler that encodes both goals. The
result is a history-based scheduler that is optimized for one particular com-
mand pattern. To overcome this limitation, we introduce adaptivity by using
multiple history-based schedulers; the AHB scheduler then observes the recent
command pattern and periodically chooses the most appropriate history-based
scheduler.

4.1 History-Based Schedulers

This section describes the basic structure of history-based schedulers. Similar
to branch predictors, which use the history of the previous branches to make
predictions [Cragon 1996], history-based schedulers use the history of previous

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

Memory Scheduling for Modern Microprocessors • 10:9

memory commands to decide what command to send to memory next. These
schedulers can be implemented as an FSM, where each state represents a pos-
sible history string. For example, to maintain a history of length two, where
the only information maintained is whether an operation is a Read or a Write,
there are four possible history strings—ReadRead, ReadWrite, WriteRead, and
WriteWrite—leading to four possible states of the FSM. Here, a history string
xy means that the last command transmitted to memory was y and the one
before that was x.

Unlike branch predictors, which make decisions based purely on branch his-
tory, history-based schedulers make decisions based on both the command his-
tory and the set of available commands from the reorder queues. The goal of the
scheduler is to encode some optimization criteria to choose, for a given command
history, the next command from the set of available commands. In particular,
each state of the FSM encodes the history of recent commands, and the FSM
checks for possible next commands in some particular order, effectively priori-
tizing the desired next command. When the scheduler selects a new command,
it changes state to represent the new history string. If the reorder queues are
empty, there is no state change in the FSM.

As an illustrative example, we present an FSM for a scheduler that uses
a history length of three. Assuming that each command is either a Read or a
Write operation to either port number 0 or 1, there are four possible commands,
namely Read Port 0 (R0), Read Port 1 (R1), Write to Port 0 (W0), and Write to
Port 1 (W1). The number of states in the FSM depends on the history length
and the type of the commands. In this example, since the scheduler keeps the
history of the last three commands and there are four possible command types,
the total number of states in the FSM is 4 × 4 × 4 = 64. In Figure 2 we show an
example of transitions from one particular state in this sample FSM. In this
hypothetical example, we see that the FSM will first see if a W1 is available,
and if so, it will schedule that event and transition into a new state. If this
type of command is not available, the FSM will look for an R0 command as the
second choice, and so on.

4.2 Design Details of History-Based Schedulers

As mentioned earlier, we have identified two optimization criteria for prioriti-
zation: the amount of deviation from the command pattern and the expected
latency of the scheduled command. The first criterion allows a scheduler to
schedule commands to match some expected mixture of Reads and Writes. The
second criterion represents the mandatory delay between the new memory com-
mand and the commands already being processed in DRAM. We first present
algorithms for generating schedulers for each of the two prioritization goals in
isolation. We then provide a simple algorithm for probabilistically combining
two schedulers.

4.2.1 Optimizing for the Command Pattern. The command-pattern-
scheduler algorithm generates state transitions for a scheduler that selects
commands to match a ratio of x Reads and y Writes in the steady state. The
algorithm starts by computing, for each state in the FSM, the Read/Write ratio

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

10:10 • I. Hur and C. Lin

Fig. 2. Transition diagram for the current state R1W1R0. Each available command type has a
different selection priority.

of the state’s command history. For each state, the algorithm then computes
the Read/Write ratio of each possible next command. Finally, the next com-
mands are sorted according to their Read/Write ratios. For example, consider
a scheduler with the desired pattern of “one Read per Write,” and assume that
the current state of the FSM is W1R1R0. The first choice in this state should ei-
ther be a W0 or W1, because only those two commands will move the Read/Write
ratio closer to 1.

COMMAND-PATTERN-SCHEDULER (n)

1 n is the history length
2 for all command sequences of size n
3 do r old ← Read/Write ratio of the command sequence
4 for each possible next command
5 do r new ← Read/Write ratio
6
7 if r old < ratio of the scheduler (x/y)
8 then Read commands have higher priority.
9 else Write commands have higher priority.

10
11 if there are commands with equal r new
12 then Sort them with respect to expected latency.
13 Pick the command with the minimum delay.
14
15 for each possible next command
16 do Output the next state in the FSM.

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

Memory Scheduling for Modern Microprocessors • 10:11

In situations where multiple available commands have the same effect on
the deviation from the Read/Write ratio of the scheduler, the algorithm uses
some secondary criterion, such as the expected latency, to make final decisions.

4.2.2 Optimizing for the Expected Latency. To develop a scheduler that
minimizes the expected delay of its scheduled operations, we first need a cost
model for the mandatory delays between various memory operations. Our
goal is to compute the delay caused by sending a particular command, cnew,
to memory. This delay is necessary because of the constraints between cnew

and the previous n commands that were sent to memory. We refer to the
previous n commands as c1, c2, . . . , cn, where c1 is the most recently issued
command.

We define k cost functions, f1..k(cx , cy), to represent the mandatory delays
between any two memory commands, cx and cy , that cause a hardware hazard.
Here, both k and the cost functions are memory system-dependent. For our
system, we have cost functions for “the delay between a Write to a different
bank after a Read,” “the delay between a Read to the same port after a Write,”
“the delay between a Read to the same port but to a different rank after a Read,”
etc.

We assume that the scheduler does not have the ability to track the number of
cycles passed since the previously issued commands were sent, so, our algorithm
assumes that those commands were sent at one cycle intervals. In the next step,
the algorithm calculates the delays imposed by each cx , x ∈ [1, n] on cnew for
each function, fi..k , which is applicable to any (cx , cnew) pair. Here, the term
“applicable function” refers to a function whose conditions have been satisfied.
We also define n final cost functions, f costi..n, such that

f costi(cnew) = max(f j (ci, cnew)) − (i − 1),

where i ∈ [1, n], j ∈ [1, k], and f j (ci, cnew) is applicable.
We take the maximum of f j function values because any previous command,

ci, and cnew may be related by more than one f j function. In this formula, the
subtracted term (i−1) represents the number of cycles ci that separate the issue

EXPECTED-LATENCY-SCHEDULER (n)

1 n is the history length
2 for all command sequences of size n
3 do for each possible next command
4 do Calculate the expected latency, Tdelay.
5
6 Sort possible commands with respect to Tdelay.
7
8 for commands with equal expected latency value
9 do Use Read/Write ratios to make decisions.

10
11 for each possible next command
12 do Output the next state in the FSM.

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

10:12 • I. Hur and C. Lin

of command ci and cnew. Thus, the expected latency that will be introduced by
sending cnew is

Tdelay(cnew) = max(f cost1..n(cnew)).

The expected-latency-scheduler algorithm generates an FSM for a sched-
uler that uses the expected latency, Tdelay, to prioritize the commands. As with
the previous algorithm, if multiple available commands have the same ex-
pected latency, we use a secondary criterion—in this case the deviation from the
command pattern—to break ties.

4.2.3 A Probabilistic Scheduler Design Algorithm. To combine our two op-
timization criteria, the probabilistic-scheduler algorithm weights each criterion
and produces a probabilistic decision. At runtime, a random number is period-
ically generated to determine the rules for state transitions as follows:

PROBABILISTIC-SCHEDULER ()

1 if random number < threshold
2 then command-pattern-scheduler
3 else expected-latency-scheduler

Basically, we interleave two state machines into one, periodically switching
between the two in a probabilistic manner. In this approach, the threshold value
is system and program dependent and should be determined experimentally.
(See Section 6.2 for more details.)

4.3 Adaptive Selection of Schedulers

Our adaptive history-based scheduler is schematically shown in Figure 3. Each
of the n schedulers is a history-based scheduler that is tuned for a specific mix-
ture of Read and Write commands. The memory controller tracks the mixture of
Reads and Writes that it receives from the processors and periodically switches
among the schedulers depending on this mixture.

4.3.1 Detecting Memory Command Pattern. To select one of the history-
based schedulers, the AHB scheduler assumes the availability of three coun-
ters: Rcnt and Wcnt count the number of Reads and Writes received from the
processor, and Pcnt provides the period of adaptivity. Every Pcnt cycles, the
ratio of the values of Rcnt and Wcnt is used to select the most appropriate
history-based scheduler. The Read/Write ratio can be calculated using left shift
and addition/subtraction operations; since this computation is performed once
every Pcnt cycles, its cost is negligible. To prevent retried commands from skew-
ing the command pattern, we distinguish between new commands and retried
commands, and only new commands affect the values of Rcnt and Wcnt. The
values of Rcnt and Wcnt are set to zero when Pcnt becomes zero.

5. METHODOLOGY AND EXPERIMENTAL SETUP

In this section, we describe the benchmarks, simulation methodology, and sim-
ulations parameters that we use in evaluating the memory schedulers.

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

Memory Scheduling for Modern Microprocessors • 10:13

Fig. 3. Overview of adaptive selection of schedulers in memory controller.

5.1 Benchmarks and Microbenchmarks

We evaluate the performance of the memory schedulers using both techni-
cal and non-technical benchmarks. For technical benchmarks, we use the
Stream [McCalpin 1995] and NAS [Bailey et al. 1994] benchmarks. For non-
technical benchmarks, we use a set of internal IBM commercial workloads.
We also create a set of microbenchmarks for detailed analysis of the memory
controller.

The first set of benchmarks measure streaming behavior. The Stream bench-
marks, which others have used to measure the sustainable memory bandwidth
of systems [Cvetanovic 2003; Scott 1996], consist of four simple vector kernels:
Copy, Scale, Vsum, and Triad. The Stream2 benchmarks, which consist of Fill,
Copy, Daxpy, and Sum, were introduced to measure the effects of all levels of
caches and to show the performance differences of Reads and Writes. In our
study, we combine the Stream and Stream2 benchmarks to create the extended
Stream benchmarks, which consist of seven vector kernels. We list these ker-
nels in Table I and, for simplicity, we refer to them collectively as the Stream
benchmarks in the rest of this article.

The second set of benchmarks, the NAS (Numerical Aerodynamic Simula-
tion) benchmarks (see Table II), is a group of eight programs developed by
NASA. These programs are derived from computational fluid dynamics appli-
cations and are good representatives of scientific applications. The NAS bench-
marks are fairly memory intensive, but they are also good in measuring vari-
ous other performance characteristics of high performance computing systems.
There exist parallel and serial implementations of the various sizes of the NAS
benchmarks. In this study, we use a serialized version of class B.

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

10:14 • I. Hur and C. Lin

Table I. The Extended Set
of Stream Benchmarks

Kernel Description

daxpy x[i]=x[i]+a*y[i]
copy x[i]=y[i]
scale x[i]=a*x[i]
vsum x[i]=y[i]+z[i]
triad x[i]=y[i]+a*z[i]
fill x[i]=a
sum sum=sum+x[i]

Table II. The NAS Benchmarks

Program Description

bt Block-Tridiagonal Systems
cg Conjugate Gradient
ep Embarrassingly Parallel
ft Fast Fourier Transform for Laplace Equation
is Integer Sort
lu Lower-Upper Symmetric Gauss-Seidel
mg Multi-Grid Method for Poisson Equation
sp Scalar Pentadiagonal Systems

The third set of benchmarks consists of four commercial server applications,
namely, tpcc, trade2, cpw2, and sap. Tpcc is an online transaction process-
ing workload; cpw2 is a Commercial Processing Workload that simulates the
database server of an online transaction processing environment; trade2 is
an end-to-end web application that models an online brokerage; and sap is a
database workload.

Finally, we use a set of microbenchmarks, which allows us to study the per-
formance of dual-processor systems (see Section 5.2) and which allows us to
explore the detailed behavior of the various memory schedulers. Each of the
microbenchmarks uses a different Read/Write ratio, and each is named x R yW ,
indicating that it has x Read streams and y Write streams. Table III shows the
14 microbenchmarks that we use. These microbenchmarks represent most of
the data streaming patterns that we expect to see in any given epoch.

5.2 Simulation Methodology

To evaluate performance, we use a cycle-accurate simulator for the IBM Power5,
which has been verified to within 1% of the performance of the actual hard-
ware [Hur 2006]. This simulator attempts to model every detail of the hardware,
as evidenced by the size of the simulator, which is on the order of one million
lines of high-level language code. This simulator, which is one of several used by
the Power5 design team, simulates both the processor and the memory system
in one of three distinct modes. The first mode can simulate arbitrary appli-
cations using execution traces, and it can simulate a single-processor system
with one or two threads. We use this mode to simulate the Stream and the NAS
benchmarks. The second mode can simulate dual-processor systems that share

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

Memory Scheduling for Modern Microprocessors • 10:15

Table III. Microbenchmarks

Benchmark Description Benchmark Description

4r0w 4 Read Streams 3r2w 3 Read and 2 Write Streams
2r0w 2 Read Streams 1r1w 1 Read and 1 Write Streams
1r0w 1 Read Streams 1r2w 1 Read and 2 Write Streams
8r1w 8 Read and 1 Write Streams 1r4w 1 Read and 4 Write Streams
4r1w 4 Read and 1 Write Streams 0r1w 1 Write Streams
3r1w 3 Read and 1 Write Streams 0r2w 2 Write Streams
2r1w 2 Read and 1 Write Streams 0r4w 4 Write Streams

a memory controller, but it can only simulate microbenchmarks whose behav-
ior can be concisely described without execution traces, and it cannot simulate
multiple threads. We use this mode to gather dual-processor results for our
microbenchmarks. The third mode uses statistical information collected from
trace based runs to simulate an arbitrary number of processors with single or
multiple threads. The rate of the commands coming from the processors to the
memory controller matches the actual run, but the low-order bits of addresses
are randomized. We use this third mode to simulate commercial benchmarks.

We simulate the microbenchmarks in their entirety. To simulate Stream and
NAS benchmarks, which have billions of dynamic instructions, we use uniform
sampling, taking 50 uniformly chosen samples that each consist of 2 million in-
structions. We simulate commercial benchmarks for 10 million processor cycles,
which we observed to be sufficient to reach steady-state.

We choose to not use SimPoint [Sherwood et al. 2001] for two reasons. First,
SimPoint has been designed to identify representative samples of long execu-
tion traces where behavior is defined by CPI. We have evidence that SimPoint
requires modification to produce representative traces if performance is defined
by memory behavior. Second, as a practical matter, it would take an enormous
amount of time to run SimPoint on our benchmarks to produce the representa-
tive traces.

5.3 Simulation Parameters

We simulate a Power5 running at 2.132 GHz. Our simulator models all three
levels of the cache. The L1D and L1I caches are 64 KB with 2-way set associativ-
ity, and the L2 cache is a 3 × 640KB shared cache with 10-way set associativity
and a line size of 128B. The optional off-chip L3 cache is a 36 MB victim cache.
We simulate the DDR2-533 SDRAM chips running at 533 MHz. This DRAM is
organized as 4 ranks, where each rank consists of 4 banks.

We use three types of history-based schedulers. The first, 1R2W , is opti-
mized for data streams with twice as many Writes as Reads. The second,
1R1W , is optimized for streams with equal numbers of Reads and Writes.
The third, 2R1W , is optimized for streams with twice as many Reads as
Writes. These schedulers use history lengths of 2 and consider commands
that read or write from either of two ports, so each scheduler uses a 16-
state FSM. The adaptive history-based scheduler combines these three history-
based schedulers by using the 2R1W scheduler when the Read/Write ratio is
greater than 1.2, by using the 1R1W scheduler when the Read/Write ratio is

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

10:16 • I. Hur and C. Lin

between 0.8 and 1.2, and by otherwise using the 1R2W scheduler. The selec-
tion of these schedulers is performed every 10,000 processor cycles. We assign
30% priority to the command pattern criterion and 70% to the expected latency
criterion.

6. EXPERIMENTAL RESULTS

In this section, we evaluate the AHB scheduler and compare its performance
against two previous scheduling approaches. The first is the in-order scheduler,
which we believe is used in most current processors. The second represents the
state of the art as defined by the literature, which we empirically identify in
the next subsection. We then compare the performance of these two schedulers
and the AHB scheduler using the Stream, NAS, and commercial benchmarks.
Finally, we use microbenchmarks to investigate performance bottlenecks in
the memory subsystem. Our results show that the AHB scheduler is always
superior to the previously proposed methods. We also see that the scheduler
plays a critical role in balancing various bottlenecks in the system.

6.1 Evaluating Previous Approaches

To assess the prior state-of-the-art, we identify three main features of previ-
ously proposed memory controllers that are relevant to DDR2 SDRAM chips,
namely, (1) the handling of bank conflicts, (2) the bank scheduling method, and
(3) the priorities for Reads and Writes. We then compare the space of these
three design features using the Stream benchmarks. We now describe each of
these three features in more detail.

The first feature specifies the scheduler’s behavior when the selected com-
mand has a bank conflict, of which two choices have been proposed: the sched-
uler can hold the conflicting command in the reorder queues until the bank
conflict is resolved, or the scheduler can transmit the command to the CAQ.

The second feature, the bank scheduling method, provides a method of
scheduling commands to banks. We consider three approaches: FIFO, LRU,
and Round-Robin. The first, FIFO, implements the simple first-in first-out pol-
icy used by most general purpose memory controllers today. If implemented
in a Power5 system, this scheduler would transmit memory commands from
the reorder queues to the CAQ in the order in which they were received from
the processors. In terms of implementation cost, FIFO scheduling is the sim-
plest method among all three scheduling approaches. The second scheduling
approach, LRU, gives priority to commands with bank numbers that were least
recently scheduled. If there are more than one such commands, the scheduler
will switch to the FIFO approach and pick the oldest command. To obtain max-
imum advantage from the LRU method, we assume true-LRU, which may be
unreasonably costly to implement. Finally, the Round-Robin scheduling tech-
nique tries to utilize banks equally by imposing a strict Round-Robin access to
the banks. To guarantee forward progress, we implement a modified version of
Round-Robin. In our implementation, if the reorder queues have no command to
satisfy the bank sequence but they do have other commands, the Round-Robin
scheduler picks a command that is closest to the optimal sequence. As with the

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

Memory Scheduling for Modern Microprocessors • 10:17

Table IV. Performance (in CPI) of Previous Scheduling Approaches as Measured
on the Stream Benchmarks

Bank Hold, Scheduler, Priority daxpy copy scale vsum triad fill sum mean

No Hold, FIFO, Equal (in-order) 1.987 3.142 2.131 2.001 2.005 2.265 0.851 1.938
No Hold, FIFO, Read 1.260 2.164 1.474 1.542 1.561 2.121 0.650 1.448
No Hold, LRU, Equal 0.895 1.557 1.072 1.060 1.061 1.783 0.527 1.067
No Hold, LRU, Read 0.856 1.467 1.006 1.003 1.004 1.825 0.864 1.105
No Hold, Round-Robin, Equal 1.118 1.812 1.242 1.244 1.246 2.007 0.555 1.233
No Hold, Round-Robin, Read 1.119 1.776 1.211 1.213 1.219 2.018 0.555 1.219

Hold, FIFO, Equal 0.866 1.475 1.014 1.028 1.032 1.798 0.515 1.035
Hold, FIFO, Read (historyless) 0.825 1.487 1.020 0.978 0.977 1.775 0.517 1.014
Hold, LRU, Equal 0.855 1.507 1.038 1.017 1.017 1.782 0.560 1.047
Hold, LRU, Read 0.846 1.463 0.999 0.982 0.980 1.800 0.515 1.014
Hold, Round-Robin, Equal 0.808 1.463 1.001 0.956 0.957 1.786 0.569 1.014
Hold, Round-Robin, Read (best) 0.824 1.478 1.013 0.973 0.969 1.783 0.521 1.011

LRU approach, if there are multiple commands to the bank, the scheduler uses
a FIFO policy and selects the oldest such command.

The third design feature describes how commands are selected from the
Read and Write reorder queues. We evaluate two approaches: 1) every Read
or Write command has equal priority, and 2) Reads have higher priority over
Writes. We believe, in general, that giving higher priority to Reads will im-
prove performance. To prevent starvation of Writes, we evaluate Rixner et al.’s
techniques in which Writes are given higher priority if either of the following
conditions exists: i) there is a Write command that waited too long, or ii) the
Write reorder queue is about to become full. For both of these conditions the
memory controller needs threshold values. Determining these thresholds is not
straightforward and may be application dependent.

To translate these design features into a concrete scheduler, we prioritize
these three features as follows. Since bank conflict costs are high, our im-
plementations use the first design feature to reduce the number of candidate
commands in the reorder queues. Then, from each of the reorder queues, the
scheduler identifies one command that satisfies the bank scheduling approach.
Finally, the Read/Write priorities are used to select the command.

Since we identify three bank scheduling methods, two approaches for pri-
oritizing Reads and Writes, and two choices for handling bank conflicts, we
evaluate a total of twelve points in the design space. Table IV illustrates that
out of the three criteria, the bank hold policy has the greatest effect—up to
46%—on performance. We see that any method that does not holds commands
with bank conflicts is better than its counterpart that does not hold the com-
mands. Among the six approaches that hold for bank conflicts, the Read/Write
priority is generally more important than the bank scheduling method, as the
performance gains from holding banks obviate the need for a complicated bank
scheduling method. Among the six approaches that do not hold for bank con-
flicts, the effect of the bank scheduling policy can be significant, as high as 45%,
with LRU being the best. In terms of implementation complexity, FIFO bank
scheduling is the simplest. Therefore, we identify “Hold, FIFO, Read Priority”

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

10:18 • I. Hur and C. Lin

approach, which we call historyless, as the first baseline for our study. Note that
in our previous work [Hur and Lin 2004, 2006], we used the term memoryless
for “Hold, FIFO, Equal Priority” method, which is a slightly inferior method.

6.1.1 The In-order and AHB Schedulers in Context. We can now describe
the in-order and AHB schedulers in relation to these three design features.
The in-order scheduler is equivalent to the “No Hold, FIFO, Equal Priority”
scheduler. The AHB scheduler requires a bit more explanation: It holds the
commands in the reorder queues if there is a bank conflict; it then uses the adap-
tive history-based technique described in Section 4 to select the most appropri-
ate command from among the remaining commands in the reorder queues. In
other words, the adaptive history-based approach is used to handle rank and
port conflicts but not bank conflicts. The adaptive history-based approach also
combines bank scheduling with and Read/Write priorities, so it eliminates the
need to determine thresholds for priority selection. In short, the AHB scheduler
uses a simple mechanism for deciding how to deal with bank conflicts, and it
introduces a single mechanism for implementing the second and third design
features.

6.2 Tuning the AHB Scheduler

The AHB scheduler has three parameters, namely history length, epoch length,
and the weighting of the two optimization criteria. In this subsection we tune
these parameters using the daxpy benchmark and assuming that there are two
active threads on one processor.

6.2.1 History Length. We compare four AHB schedulers whose history
lengths range between 1 and 4. Table V(a) shows that a history length of 2 is
superior to a history length of 1 by 6.4%. However, using longer history lengths
longer than 2 improves performance by only 1.8%. Therefore, considering the
implementation cost, all experiments in this study use an AHB scheduler with
a history length of 2.

6.2.2 Epoch Length. We vary epoch length from 100 to 10,000 processor
cycles. Table V(b) illustrates that any length over 1,000 cycles gives essentially
the same performance. We choose 10,000 processor cycles as the epoch length
in our study.

6.2.3 Ratio for Optimization Criteria. The AHB scheduler optimizes for
two criteria, namely the expected latency and the command pattern. As we
describe in Section 4, our approach combines two criteria probabilistically by
giving weights to each criterion. Table V(c) shows that we obtain the best perfor-
mance when we assign the expected latency a weight of 70% and the command
pattern a weight of 30%.

6.3 Benchmark Results

We now present simulation results for the AHB, in-order, and historyless sched-
ulers using the Stream, NAS, and commercial benchmarks. For the Stream and

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

Memory Scheduling for Modern Microprocessors • 10:19

Table V. Tuning of the AHB Scheduler

(a) Effects of History Length
History Length CPI

1 0.743
2 0.696
3 0.684
4 0.684

(b) Effects of Epoch Length
Epoch Length (processor cycles) CPI

100 0.712
500 0.703

1,000 0.694
5,000 0.696

10,000 0.696

(c) Effects of Ratio for Optimization Criteria
Weight of Expected Latency (%) CPI

0 0.713
10 0.708
20 0.711
30 0.712
40 0.700
50 0.704
60 0.697
70 0.696
80 0.699
90 0.703

100 0.709

NAS benchmarks, our simulator allows us to simulate one or two threads on
one processor. For the commercial benchmarks, we can simulate one or two
threads on either single or dual core systems.

We first compare the single thread performance of the three schedulers for
the Stream benchmarks (see Table VI). The geometric means of the performance
benefit of the AHB scheduler over the in-order and the historyless schedulers is
52.8% and 11.8%, respectively. For two threads on a processor, adaptive history-
based scheduler improves execution time by an average of 55.9% over the in-
order scheduler and 15.6% over the historyless scheduler.

Our second set of results are for the NAS benchmarks, which provide a more
comprehensive evaluation of overall performance. Table VII shows that for the
single thread experiments, the average improvement of the AHB scheduler over
the in-order method is 17.6%, and the average improvement over the historyless
method is 6.1%. In the SMT experiments, we use two threads of the same
application, and the AHB scheduler improves performance by 26.3% and 9.9%
over the in-order and historyless schedulers, respectively.

Finally, in Table VIII, we present the results for the commercial bench-
mark suite running on single and dual core systems, with one or two threads
active on each processor, resulting in four different configurations. For the

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

10:20 • I. Hur and C. Lin

Table VI. Performance Comparison (in CPI) of the In-Order, Historyless, and
AHB Schedulers as Measured on the Stream Benchmarks

gain over gain over
in-order historyless

Benchmark in-order historyless AHB (%) (%)

One Thread on One Processor
daxpy 1.933 0.785 0.712 63.2 9.3
copy 3.576 1.578 1.312 63.3 16.9
scale 2.467 1.082 0.932 62.2 13.9
vsum 2.083 1.008 0.877 57.9 13.0
triad 2.088 1.007 0.884 57.7 12.2
fill 2.321 1.696 1.547 33.3 8.8
sum 0.854 0.793 0.730 14.5 7.9
geometric mean 2.040 1.090 0.962 52.8 11.8

Two Threads on One Processor
daxpy 1.987 0.825 0.696 65.0 15.6
copy 3.142 1.487 1.212 61.4 18.5
scale 2.131 1.020 0.833 60.9 18.3
vsum 2.001 0.978 0.837 58.2 14.4
triad 2.005 0.977 0.838 58.2 14.2
fill 2.265 1.775 1.518 33.0 14.5
sum 0.851 0.517 0.447 47.5 13.5
geometric mean 1.939 1.013 0.855 55.9 15.6

single threaded case on a single processor, the AHB scheduler has, on the av-
erage, a 13.4% performance advantage over the in-order scheduler and a 3.1%
advantage over the historyless scheduler. When there are two total threads exe-
cuting, the AHB scheduler’s advantage increases to 28.2% and 4.5% on a single
core system, and to 33.5% and 5.6% on a dual core system. For two threads
running on each of two processors, the gain from the AHB scheduler is 51.8%
over the in-order scheduler and 7.6% over the historyless scheduler.

In summary, our experiments with the Stream, NAS, and commercial bench-
marks indicate that the AHB scheduler is superior to the in-order and histo-
ryless schedulers. We also see that the AHB’s benefit increases as the total
number of threads in the system increases, because additional threads increase
pressure on the single memory controller.

6.4 Understanding the Results

We now look inside the memory system to gain a better understanding of our
results. To study a broader set of hardware configurations, we use a set of
14 microbenchmarks, ranging from 4 Read streams and 0 Write streams, to 0
Read streams and 4 Write streams. Figure 4 shows that for these microbench-
marks, the adaptive history-based method improves performance by 20–70%
compared to the in-order scheduler and by 17–20% compared to the historyless
scheduler.

The most direct measure of the quality of a memory controller is its impact
on memory system utilization. Figure 5 shows a histogram of the number of

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

Memory Scheduling for Modern Microprocessors • 10:21

Table VII. Performance Comparison (in CPI) of the In-Order, Historyless, and
AHB Schedulers as Measured on the NAS Benchmarks

gain over gain over
in-order historyless

Benchmark in-order historyless AHB (%) (%)

One Thread on One Processor
bt 0.960 0.883 0.838 12.7 5.1
cg 1.841 1.712 1.582 14.1 7.6
ep 2.465 2.219 2.118 14.1 4.6
ft 2.743 2.277 2.074 24.4 8.9
is 2.370 1.990 1.861 21.5 6.5
lu 2.455 2.013 1.872 23.7 7.0
mg 1.327 1.155 1.088 18.0 5.8
sp 1.502 1.380 1.335 11.1 3.3
geometric mean 1.852 1.626 1.526 17.6 6.1

Two Threads on One Processor
bt 1.005 0.781 0.721 28.3 7.7
cg 1.806 1.532 1.365 24.4 10.9
ep 2.151 1.971 1.798 16.4 8.8
ft 2.655 2.027 1.780 33.0 12.2
is 2.145 1.616 1.440 32.9 10.9
lu 2.012 1.732 1.561 22.4 9.9
mg 1.108 0.930 0.819 26.1 11.9
sp 1.365 1.086 1.012 25.9 6.8
geometric mean 1.694 1.385 1.248 26.3 9.9

operations that are active in the memory system on each cycle. We see that
when compared against the historyless scheduler, the AHB scheduler increases
the average utilization from 8 to 9 operations per cycle. The x-axis goes to
12 because the Power5’s DRAM allows 12 memory commands to be active at
once.

Memory system utilization is also important when interpreting our other
results, because it is easier for an scheduler to improve the performance of a
saturated system. We measure the utilization of the command bus that con-
nects the memory controller to the DRAM, and we find that the utilization
is about 65% for the Stream benchmarks and about 13%, on average, for the
NAS benchmarks. We conclude that the memory system is not saturated for
our workloads.

6.4.1 Bottlenecks in the System. To better understand why the AHB sched-
uler improves DRAM utilization, we now examine various potential bottlenecks
within the memory controller.

The first potential bottleneck occurs when the reorder queues are full. In this
case, the memory controller must reject memory operations, and the CPU must
retry the memory operations at a later time. The retry rate does not correlate
exactly to performance, because a retry may occur when the processor is idle
waiting for a memory request. Nevertheless, a large number of retries hints
that the memory system is unable to keep up with the processor’s memory

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

10:22 • I. Hur and C. Lin

Table VIII. Performance Comparison (in CPI) of the In-Order, Historyless, and
AHB Schedulers as Measured on the Commercial Benchmarks

gain over gain over
Benchmark in-order historyless AHB in-order historyless

(%) (%)

One Thread on One Processor
tpcc 15.458 14.222 13.798 10.7 3.0
cpw2 15.366 14.092 13.738 10.6 2.5
trade2 15.728 14.326 14.052 10.7 1.9
sap 10.268 8.542 8.112 21.0 2.9
geometric mean 13.995 12.514 12.124 13.4 3.1

Two Threads on One Processor
tpcc 11.572 9.304 8.890 23.2 4.4
cpw2 11.274 8.746 8.396 25.5 4.0
trade2 11.152 8.726 8.380 24.9 4.0
sap 8.406 5.506 5.206 38.1 5.4
geometric mean 10.516 7.907 7.554 28.2 4.5

One Thread on Each of the Two Processors
tpcc 10.576 7.913 7.518 28.9 5.0
cpw2 10.611 7.760 7.335 30.9 5.5
trade2 10.431 7.749 7.291 30.1 5.9
sap 7.896 4.780 4.494 43.1 6.0
geometric mean 9.805 6.906 6.520 33.5 5.6

Two Threads on Each of the Two Processors
tpcc 9.733 5.401 5.037 48.2 6.7
cpw2 9.744 5.153 4.773 51.0 7.4
trade2 9.593 5.100 4.766 50.3 6.5
sap 7.367 3.483 3.151 57.2 9.5
geometric mean 9.048 4.715 4.359 51.8 7.6

demands. Figure 6 shows that the adaptive history-based method, compared to
the historyless approach, sometimes increases and sometimes decreases retry
rates. Thus, we see that there is no clear correlation between the retry rate and
performance.

A second bottleneck occurs when no operation in the reorder queues can be
issued because of bank conflicts with previously scheduled commands. This bot-
tleneck is a good indicator of scheduler performance, because a large number
of such cases suggests that the scheduler has done a poor job of scheduling
memory operations. Figure 7 compares the total number of such blocked com-
mands for the AHB and historyless schedulers. This graph considers only cases
where the reorder queues are the bottleneck; that is, all operations in the re-
order queues are blocked even though the CAQ has empty slots. We see that
except for four microbenchmarks, the AHB scheduler substantially reduces the
number of such blocked operations.

A third bottleneck occurs when the reorder queues are empty, starving the
scheduler of work. Even when the reorder queues are not empty, low occupancy

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

Memory Scheduling for Modern Microprocessors • 10:23

Fig. 4. Performance benefit, for the microbenchmarks, of the AHB scheduler over the in-order and
historyless schedulers.

Fig. 5. DRAM Utilization for the daxpy kernel.

Fig. 6. Percent difference in retry rates between the historyless scheduler and the AHB scheduler
(100× h−a

h , where h is the retry rate of the historyless scheduler and a is the retry rate of the AHB
scheduler). The AHB scheduler leads to more retries for the first 8 microbenchmarks.

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

10:24 • I. Hur and C. Lin

Fig. 7. Percent difference in number of bank conflicts that exist for commands in the reorder
queues between the historyless scheduler and the AHB scheduler (100× h−a

h , where h is the number
of bank conflicts of the historyless scheduler and a is the number for the AHB scheduler). The AHB
scheduler causes fewer bank conflicts in 10 out of 14 microbenchmarks.

Fig. 8. Reduction in the occurrences of empty reorder queues, which is a measure of the occupancy
of the reorder queues. The y-axis represents the percent difference between the historyless sched-
uler and the AHB scheduler (100× h−a

h , where h is the number of occurrences of empty reorder
queues for the historyless scheduler and a is the number of occurrences for the AHB scheduler).
With the AHB scheduler, substantially fewer empty reorder queues occur.

in the reorder queues is bad because it reduces the scheduler’s ability to make
good scheduling decisions. In the extreme case, where the reorder queues hold
no more than a single operation, the scheduler has no ability to reorder mem-
ory operations and instead simply forwards the single available operation to the
CAQ. Figure 8 shows that the AHB scheduler significantly reduces the occur-
rences of empty reorder queues, indicating higher occupancy of these queues.

The final bottleneck occurs when the CAQ is full, forcing the scheduler to
remain idle. Figure 9 shows that the adaptive history-based scheduler tremen-
dously increases this bottleneck. The backpressure created by this bottleneck
leads to higher occupancy in the reorder queues, which is advantageous because
it gives the scheduler a larger scheduling window.

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

Memory Scheduling for Modern Microprocessors • 10:25

Fig. 9. Increases in the number of occurrences where the CAQ is a bottleneck. The y-axis repre-
sents the percent difference between the AHB scheduler and the historyless scheduler (100× a−h

h ,
where h is the number of occurrences where the CAQ is a bottleneck for the historyless scheduler
and a is the number of occurrences for the AHB scheduler). For the first 9 microbenchmarks, the
CAQ is a bottleneck more frequently for the AHB scheduler.

To test this theory, we conduct an experiment in which we increase the
size of the CAQ. We find that as the CAQ length increases, the CAQ bottle-
neck decreases, the reorder queue occupancy falls, and the overall performance
decreases.

In summary, the AHB scheduler improves bandwidth by moving bottlenecks
from outside the memory controller, where the scheduler cannot help, to inside
the memory controller. More specifically, the bottlenecks tend to appear at the
end of the pipeline—at the CAQ—where there is no more ability to reorder
memory commands. By shifting the bottleneck, the scheduler tends to increase
the occupancy of the reorder queues, which gives the scheduler a larger number
of memory operations to choose from. The result is a smaller number of DRAM
conflicts and increased bandwidth.

6.4.2 Effects of Data Alignment. Another benefit of improved memory
scheduling is a reduced sensitivity to data alignment. With a poor scheduler,
data alignment can cause significant performance differences. The largest effect
is seen where a data structure fits on one cache line when aligned fortuitously
but straddles two cache lines when aligned differently. In such cases, the bad
alignment results in twice the number of memory commands. If a scheduler
can improve bandwidth by reordering commands, it can mitigate the difference
between the well-aligned and poorly aligned cases. Figure 10 compares the
standard deviations of the adaptive history-based and historyless schedulers
when data are aligned on 16 different address offsets. We see that the adaptive
history-based solution reduces sensitivity to alignment.

6.4.3 Perfect DRAM Results. We have so far evaluated the AHB sched-
uler by comparing against previous solutions. To see how much room there is
for further improvement, we compare the performance of the AHB scheduler
against a perfect DRAM in which there are no conflict hazards. We find that for

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

10:26 • I. Hur and C. Lin

Fig. 10. Reduction in the standard deviations for 16-different address offsets. The y-axis repre-
sents percent difference between the standard deviation for the historyless scheduler and the AHB
scheduler (100× h−a

h , where h is the standard deviation for the historyless scheduler and a is the
standard deviation for the AHB scheduler).

the benchmarks that we evaluate, the AHB scheduler achieves 95–98% of the
performance of the perfect DRAM.

7. SENSITIVITY ANALYSIS

In the previous section we analyzed the performance of the AHB scheduler in
the context of the IBM Power5. In this section we explore the broader utility of
this scheduler by analyzing its performance in the context of various derivatives
of the Power5. In particular, this section has three goals:

—We analyze the sensitivity and robustness of the AHB scheduler to various
micro-architectural features. We show that the AHB scheduler yields perfor-
mance that is robust across a variety of micro-architectural parameters. We
also show that the other schedulers cannot achieve the performance of the
AHB scheduler even if given additional hardware resources.

—We identify optimal values for parameters related to the memory scheduler.
—We evaluate the AHB scheduler for possible future architectural trends.

The next three subsections address these goals by varying a set of memory
controller parameters, DRAM parameters, and system parameters, and study-
ing the effects of these changes on performance. We consider both single and
multiple-thread performance, and we use the historyless scheduler as our base-
line. To reduce the amount of data to present, we limit our experiments to the
daxpy benchmark.

7.1 Modifying Memory Controller Parameters

In this section, we see how the AHB and historyless schedulers are affected by
modifying various memory controller design features. Since the design space
is large, we limit ourselves to variations of the Power5 memory controller, and
we focus on three important parameters: the CAQ length, the reorder queue

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

Memory Scheduling for Modern Microprocessors • 10:27

lengths, and the duration to block a command in the reorder queues when there
is a bank conflict. We believe that these features have the greatest impact on
performance.

7.1.1 CAQ Length. The Centralized Arbiter Queue resides between the
memory scheduler and DRAM. At each cycle, the scheduler selects an appro-
priate command from the reorder queues and feeds it to the CAQ. Since the CAQ
acts as a buffer between the scheduler and DRAM, the length of this queue is
critical to performance. Here, we examine the performance effects of the CAQ
length. For various configurations and schedulers, we first determine the op-
timal length for the queue. We then analyze the sensitivity of the scheduling
approaches to the changes in this length. Our experiments show that the AHB
scheduler is superior to the historyless scheduler for all CAQ lengths that we
study.

The CAQ length may degrade performance if it is either too short or too
long. If the queue is too short, it will tend to overflow frequently and lead to
full reorder queues, which will cause the memory controller to reject memory
commands from the processor and degrade overall performance. We can reduce
the occurrence of CAQ overflows by increasing the CAQ length, but a long CAQ
has its own disadvantages. First, it consumes more hardware resources, as
the Power5 memory controller’s hardware budget is dominated by the reorder
queues and CAQ. Second, as explained in Section 6.4, a long CAQ can reduce
backpressure on the reorder queues, giving the scheduler a smaller effective
scheduling window, which leads to suboptimal scheduling decisions. Therefore,
the CAQ acts as a regulator for the rate of commands to be selected from the
reorder queues, and there is a delicate balance between the CAQ length and
performance.

We conduct experiments in which we vary the CAQ length from 2 to 16. In
Figure 11, we show the effect of the CAQ length for both Single-Threaded (ST)
and SMT environments. For the ST daxpy, the AHB scheduler gets the best
performance for a queue length of 4. As the queue length increases beyond 4,
there is a slight performance degradation. For the SMT case, a queue length of
3 gives the best performance for the AHB method. Similar to the ST case, as the
CAQ length increases beyond the optimal value, we observe performance degra-
dation. But unlike the ST case, the performance degradation is not small. For
example, performance is 1.7% lower for a queue length of 4 compared to a length
of 3. This performance difference goes up to 4.4% when the queue has 16 slots.

Figure 11 also shows that for the historyless scheduler, longer CAQs always
yield better performance, most likely because the historyless scheduler has no
way to exploit larger scheduling windows. For example, in the ST case, the
performance of the historyless scheduler improves by 7.1% as the CAQ length
increases from 3 to 16. However, even with this queue length, the AHB sched-
uler is still superior to the historyless scheduler. In the SMT experiments with
the historyless scheduler, we find that the performance gain from increasing
the queue length to 16 is much smaller than for the ST case.

In summary, the performance of the historyless method improves as the
CAQ gets longer, but it cannot achieve the performance of the AHB scheduler

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

10:28 • I. Hur and C. Lin

Fig. 11. ST and SMT performance results for the historyless and the AHB schedulers when the
length of the CAQ is varied.

even if given a much longer CAQ. We also conclude that the length of the CAQ
significantly affects performance.

7.1.2 Reorder Queue Lengths. As we show in Figure 1, the Power5 has sep-
arate Read and Write reorder queues inside the memory controller. In the cur-
rent design of the Power5, each of these queues has an equal length of 8. Here,
we analyze the effect of the reorder queue lengths on the scheduling approaches.

The length of the reorder queues affects performance in two ways. First, re-
tries occur when the reorder queues are full, so shorter reorder queues increase
the number of retries and potentially decrease overall performance. Second, if
the reorder queues are short, the scheduler will have limited optimization ca-
pability. In the extreme case, consider a reorder queue with just one slot. The
scheduler will have no choice but to select the command from that slot. We
therefore expect that increasing the size of the reorder queues will improve the
performance of any scheduling approach.

We perform simulations that vary the reorder queue lengths from 4 to 16. For
simplicity, we always keep the lengths of the two queues the same. In Figure 12,
we present the effects of the reorder queue lengths on performance for both the
AHB and the historyless schedulers. For the single threaded experiments, as
we shorten the queue sizes from the Power5’s current value of 8 to 4, the AHB
scheduler loses 28.8% of its performance and historyless scheduler loses 25.3%.
The same reduction in the reorder queue lengths for the SMT experiments de-
grades performance 27.3% for the AHB scheduler and 19.9% for the historyless
schedulers. On the other hand, for both of the scheduling approaches, when we
increase the reorder queue lengths beyond the current value of 8, we obtain
negligible performance improvements.

To summarize, the AHB method can better utilize a larger reorder queue,
so its advantage over the historyless method increases as the reorder queue

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

Memory Scheduling for Modern Microprocessors • 10:29

Fig. 12. ST and SMT performance results for the historyless and AHB scheduler when the reorder
queue length is varied.

length grows. We also observe that the current queue lengths are optimal for
the Power5. We cannot obtain any significant performance gains with longer
queues regardless of the scheduling approach or the number of threads.

7.1.3 Wait Times for Commands with Bank Conflicts. This section ana-
lyzes the effect of the third memory controller design parameter, which we now
describe. We have pointed out that the Power5 memory controller holds in the
reorder queues any command that has a bank conflict. Such a strategy is ratio-
nal because bank conflicts prohibit the entrance of new commands to DRAM,
and since the CAQ is a FIFO queue, if the command in front of the CAQ conflicts
with a command in DRAM, then all commands in the CAQ are blocked until the
conflict is cleared. However, such a strategy is also conservative, because even
with an empty CAQ, there is in the current Power5 implementation a latency
of 32 processor cycles before a command in a reorder queue is issued to DRAM.
Thus, the third parameter, which we refer to as the wait time, is the duration of
time, measured in cycles, that a command must be held in the reorder queues
if it has a bank conflict with a previously issued command.

The wait time in the reorder queues is important to performance. If the wait
time is too short, commands with bank conflicts will be scheduled early, yielding
two possible effects: First, the CAQ may contain multiple commands destined
for the same bank, and when one of these commands goes to DRAM, the others
will be blocked for many cycles. Second, if the command is scheduled too early,
the schedule may miss the opportunity to make a better scheduling decision
when additional commands might become available in the reorder queues.

To investigate the effects of this wait time, we conduct experiments for the
AHB and the historyless schedulers for both ST and SMT environments. As we
see in Figure 13, the AHB scheduler is much less sensitive to the wait time.
For the AHB scheduler, 95 processor cycles is the optimal wait time for both
the ST and SMT experiments. If a command waits until the bank conflict is

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

10:30 • I. Hur and C. Lin

Fig. 13. ST and SMT performance results for the historyless and the AHB schedulers when the
wait time for bank conflicts is varied.

cleared, performance will degrade by 1.8% for the ST case and 3.5% for the
SMT case. For the historyless approach, 125 and 110 cycles are the optimal
wait times for ST and SMT, respectively. The historyless method with SMT has
a 1.2% performance advantage when it uses 110 cycle wait time rather than
125 cycles.

In summary, we conclude that to account for internal memory controller
latency, the scheduler should issue commands from the reorder queues before
the bank conflict is actually cleared. We also find that for the ST case, the AHB
approach is less sensitive to this parameter than the historyless approach. For
the SMT case, both scheduling approaches show similar sensitivity.

7.2 Modifying DRAM Parameters

In this section we investigate the effect of varying DRAM system parameters.
In particular, we evaluate the performance of the AHB and the historyless
methods by varying the memory address and data bus widths, the maximum
number of commands that can be active in DRAM, and the number of banks
available in a rank. We find that each of these three parameters significantly
affects performance.

7.2.1 Address and Data Bus Widths. Memory bus width significantly af-
fects a memory system’s bandwidth, so we explore the effect of using both nar-
rower and wider memory buses for the Power5. The Power5 memory controller
is connected to memory chips via an address bus and a data bus. In the cur-
rent implementation, the address bus is 32 bits wide. The data bus has 24 bits:
16 bits for Reads and 8 bits for Writes.

In Figure 14 the x-axis represents the relative ratio of the bus widths to
the current values of the Power5. For example, 0.5 represents a system with
buses half the width of the current system. We find that reducing bus widths

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

Memory Scheduling for Modern Microprocessors • 10:31

Fig. 14. ST and SMT performance results for the historyless and AHB schedulers when the mem-
ory address and data bus widths are varied.

Fig. 15. ST and SMT performance results for the historyless and AHB schedulers when the max-
imum number of DRAM commands is varied.

by 50% significantly degrades performance (20.9–26.6%) for both the AHB and
historyless schedulers. We also observe that increasing bus widths beyond the
current values of the Power5 has little effect on performance.

7.2.2 Maximum Number of Commands in DRAM. In the systems that we
examine, the DRAM is organized into 16 banks, so there can be a maximum of
16 concurrent commands in DRAM. However, the Power5 designers choose to
track at most 12 commands at any time. To explore the benefit of tracking more
than 12 commands, we vary the number of commands tracked. In Figure 15, we
show results for both ST and SMT workloads. We find that increasing beyond

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

10:32 • I. Hur and C. Lin

Fig. 16. ST and SMT performance results for the historyless and the AHB schedulers when the
number of banks in a rank is varied.

12 the number of commands to track in DRAM does not increase performance.
However, reducing its value by 4 reduces daxpy performance up to 7.9%.

7.2.3 Number of Banks in a Rank. Future memory systems are likely to
provide increased parallelism in the form of a larger number of banks per
rank. Figure 16 shows how performance is affected by changing the number of
banks. Increasing the banks per rank from two to four improves performance
in both the ST and SMT experiments. The performance gain is 20.8%–21.7%
and 18.1%–26.6% for the AHB and historyless schedulers, respectively. On the
other hand, further increasing the number of banks to eight has a much smaller
effect: It does not improve the performance of the historyless scheduler, and the
performance gain for the AHB scheduler is 1.9% for the ST experiments and
4.6% for the SMT experiments. In summary, our experiments confirm our intu-
ition that the benefit of AHB scheduling increases as the number of banks in a
rank increases, that is, as the memory system admits more parallelism.

7.3 Modifying System Parameters

7.3.1 Processor Frequency. In addition to memory controller and DRAM
parameters, we also explore the impact of higher processor clock rates. While
increases in clock rate have slowed, processor frequency continues to increase.
In Figure 17, we present the differences between the AHB and the historyless
schedulers for systems with 1.5, 2, 3, and 4 times the processor frequency of
our base Power5 system. As the ratio of the processor frequency to the DRAM
frequency grows, we find that advantage of the AHB scheduler over the his-
toryless method also increases. For example, for the ST case, with the current
processor frequency, the AHB scheduler is superior to the historyless sched-
uler by 9.3%, but the advantage grows to 15.6% when the processor frequency
doubles. Similarly, for the SMT case, AHB method’s advantage increases from

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

Memory Scheduling for Modern Microprocessors • 10:33

Fig. 17. ST and SMT performance results for the historyless and AHB schedulers when the pro-
cessor frequency is increased by 1.5×, 2×, 3×, and 4×.

16.4% to 22.0% with 2× processor frequency. We see that as the ratio of the
processor to memory speeds increases, the significance of AHB scheduling also
increases because the value of memory bandwidth grows.

7.3.2 Data Prefetching. Finally, we investigate the effects of data prefetch-
ing on the scheduling approaches. We see that if we turn off the prefetch
unit, the adaptive history-based method’s benefit over the historyless method
is significantly diminished because the lower memory traffic reduces pres-
sure on the memory controller. For example, for daxpy in the SMT case, the
performance benefit of the AHB scheduler over the historyless scheduler is
reduced from 16.4% to 7.3% when the hardware prefetching unit is turned
off.

8. HARDWARE COSTS

To evaluate the cost of the AHB scheduler, we need to consider the cost in
terms of transistors and power. The hardware cost of the memory controller
is dominated by the reorder queues, which dwarf the amount of combina-
tional logic required to implement the adaptive history-based scheduler. To
quantify these costs, we use transistor counts provided by the designers of
the Power5 to provide detailed estimates of the transistor budget of the mod-
ified memory controller. We find that the memory controller utilizes 1.58%
of the Power5’s total transistors. The size of one historyless scheduler is in
turn 1.19% of the memory controller. The adaptive history-based scheduler
increases the size of the memory controller by 2.38%, which increases the over-
all chip’s transistor count by 0.038%. Given the tiny cost in terms of transis-
tors, we are confident that the AHB scheduler has only negligible effects on
power.

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

10:34 • I. Hur and C. Lin

9. CONCLUSIONS

This article has shown that memory access scheduling, which has traditionally
been important primarily for stream-oriented processors, is becoming increas-
ingly important for general-purpose processors, as many factors contribute to
increased memory bandwidth demands. To address this problem, we have intro-
duced a new scheduler that incorporates several techniques. First, the sched-
uler uses the command history—in conjunction with a cost model—to select
commands that will have low latency. The scheduler also uses the command
history to schedule commands that match some expected command pattern,
as this tends to avoid bottlenecks within the reorder queues. Both of these
techniques can be implemented using FSM’s, but because the goals of the two
techniques may conflict, we probabilistically combine these FSM’s to produce
a single history-based scheduler that partially satisfies both goals. Finally, be-
cause we cannot know the actual command-pattern a priori, the AHB scheduler
implements three history-based schedulers—each tailored to a different com-
mand pattern—and dynamically selects from among these three schedulers
based on the observed ratio of Reads and Writes.

To place our work in context, we have identified three dimensions that de-
scribe previous work in avoiding bank conflicts, and we have explored this
space to produce a single state-of-the-art solution that we refer to as the his-
toryless scheduler. We use this historyless scheduler as a baseline to compare
against.

In the context of the IBM Power5, we have found that a history length of two
is surprisingly effective. Thus, while our solution might appear to be complex,
it is actually quite inexpensive, increasing the Power5’s transistor count by
only 0.038%. We evaluate the performance advantage of the AHB scheduler
using three benchmark suites. For SMT workloads consisting of the Stream
benchmarks, this scheduler improves CPI by 55.9% over in-order scheduling
and 15.6% over historyless scheduling. For the NAS benchmarks, again with
SMT workloads, the improvements are 26.3% over in-order scheduling and
9.9% over historyless scheduling. For a set of commercial SMT workloads, the
improvements are 51.8% over in-order scheduling and 7.6% over historyless
scheduling.

To explain our results, we have looked inside the memory system to provide
insights about how the AHB scheduler changes the various bottlenecks within
the system. We find that an internal bottleneck at the CAQ is useful because it
gives the scheduler more operations to choose from when scheduling operations.

To better understand the broader applicability of our ideas, we have ex-
plored the effects of varying characteristics of the processor, the DRAM and
the memory controller itself. We find that as memory traffic increases, the
benefits of the AHB scheduler increase, even for multithreaded workloads.
We find that the AHB scheduler is more robust than historyless schedul-
ing in the sense that its performance is less sensitive to changes in design
parameters. We also find that the AHB scheduler is typically superior to
the historyless scheduler even when the latter is given additional hardware
resources.

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

Memory Scheduling for Modern Microprocessors • 10:35

ACKNOWLEDGMENTS

We thank the entire IBM Power5 team, in particular, Men-Chow Chiang,
Cheryl Chunco, Steve Dodson, Douglas Logan, John McCalpin, Gary
Morrison, Stephen J. Powell, Ram Raghavan, and Joel Tendler. We also thank
Bill Mark, E Lewis, and the anonymous referees for their valuable comments
on previous drafts of this article.

REFERENCES

BAILEY, D., BARSZCZ, E., BARTON, J., BROWNING, D., CARTER, R., DAGUM, L., FATOOHI, R., FINEBERG, S.,
FREDERICKSON, P., LASINSKI, T., SCHREIBER, R., SIMON, H., VENKATAKRISHNAN, V., AND WEERATUNGA,
S. 1994. The NAS parallel benchmarks (94). Tech. rep. RNR-94-007, NASA Ames Research
Center.

CARTER, J., HSIEH, W., STOLLER, L., SWANSON, M., ZHANG, L., BRUNVAND, E., DAVIS, A., KUO, C.-C.,
KURAMKOTE, R., PARKER, M., SCHAELICKE, L., AND TATEYAMA, T. 1999. Impulse: Building a smarter
memory controller. In Proceedings of the 5th International Symposium on High Performance
Computer Architecture. 70–79.

CLABES, J., FRIEDRICH, J., SWEET, M., DILULLO, J., CHU, S., PLASS, D., DAWSON, J., MUENCH, P., POWELL,
L., FLOYD, M., SINHAROY, B., LEE, M., GOULET, M., WAGONER, J., SCHWARTZ, N., RUNYON, S., GORMAN,
G., RESTLE, P., KALLA, R., MCGILL, J., AND DODSON, S. 2004. Design and implementation of the
Power5 microprocessor. In Proceedings of the 41st Annual Conference on Design Automation.
670–672.

CRAGON, H. G. 1996. Memory Systems and Pipelined Processors. Jones and Bartlett.
CVETANOVIC, Z. 2003. Performance analysis of the Alpha 21364-based HP GS1280 multiprocessor.

In Proceedings of the 30th Annual International Symposium on Computer Architecture. 218–229.
FOSTER, J. E. 2000. Memory controller and method for dynamic page management. U.S. Patent

6,052,134.
GAO, Q. S. 1993. The Chinese remainder theorem and the prime memory system. In Proceedings

of the 20th Annual International Symposium on Computer Architecture. 337–340.
HARPER, III, D. T. AND JUMP, J. R. 1986. Performance evaluation of vector accesses in parallel

memories using a skewed storage scheme. In Proceedings of the 13th Annual International Sym-
posium on Computer Architecture. 324–328.

HARRIMAN, D. J., LANGENDORF, B. K., AND AJANOVIC, J. 2000. Method and apparatus for improving
system performance when reordering commands. U.S. Patent 6,088,772.

HARRIS, J. G. 2003. Apparatus and method for handling memory access requests in a data pro-
cessing system. U.S. Patent 6,601,151.

HUR, I. 2006. Enhancing memory controllers to improve DRAM power and performance. Ph.D.
thesis, The University of Texas at Austin.

HUR, I. 2007. Method and system for creating and dynamically selecting an arbiter design in a
data processing system. US patent 7,287,111.

HUR, I. AND LIN, C. 2004. Adaptive history-based memory schedulers. In Proceedings of the 37th
Annual ACM/IEEE International Symposium on Microarchitecture. 343–354.

HUR, I. AND LIN, C. 2006. Adaptive history-based memory schedulers for modern processors. IEEE
Micro (Top Picks Issue) 26, 1, 22–29.

JENNE, J. E. AND OLARIG, S. P. 2003. Method and apparatus for scheduling memory calibrations
based on transactions. U.S. Patent 6,631,440.

KALLA, R., SINHAROY, B., AND TENDLER, J. 2004. IBM Power5 chip: A dual-core multithreaded
processor. IEEE Micro 24, 2, 40–47.

KESSLER, R. E., BERTONE, M. S., BRAGANZA, M. C., BOUCHARD, G. A., AND STEINMAN, M. B. 2003. Sys-
tem for minimizing memory bank conflicts in a computer system. U.S. Patent 6,622,225.

KHAILANY, B., DALLY, W. J., KAPASI, U. J., MATTSON, P., NAMKOONG, J., OWENS, J. D., TOWLES, B., CHANG,
A., AND RIXNER, S. 2001. Imagine: Media processing with streams. IEEE Micro 21, 2, 35–46.

LARSON, D. A. 2001. Apparatus for controlling pipelined memory access requests. U.S. Patent
6,321,233.

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

10:36 • I. Hur and C. Lin

MATHEW, B. 2000. Parallel vector access: A technique for improving memory system performance.
M.S. thesis, University of Utah.

MATHEW, B., MCKEE, S. A., CARTER, J. B., AND DAVIS, A. 2000a. Algorithmic foundations for a
parallel vector access memory system. In Proceedings of the 12th Annual ACM Symposium on
Parallel Algorithms and Architectures (SPAA). 156–165.

MATHEW, B., MCKEE, S. A., CARTER, J. B., AND DAVIS, A. 2000b. Design of a parallel vector access
unit for SDRAM memory systems. In Proceedings of the 6th International Symposium on High-
Performance Computer Architecture (HPCA-6). 39–48.

MCCALPIN, J. D. 1995. Memory bandwidth and machine balance in current high performance
computers. IEEE Computer Society Technical Committee on Computer Architecture (TCCA)
Newsletter.

MCGEE, B. J. AND CHAU, J. B. 2005. Memory controller and method using read and write queues
and an ordering queue for dispatching read and write memory requests out of order to reduce
memory latency. U.S. Patent 6,877,077.

MCKEE, S. A. 1993. Hardware support for dynamic access ordering: Performance of some design
options. Tech. rep. CS-93-08, University of Virginia.

MCKEE, S. A. 1995. Maximizing memory bandwidth for streamed computations. Ph.D. thesis,
University of Virginia.

MCKEE, S. A., KLENKE, R. H., WRIGHT, K. L., WULF, W. A., SALINAS, M. H., AYLOR, J. H., AND BATSON,
A. P. 1998. Smarter memory: Improving bandwidth for streamed references. IEEE Comput.,
31, 54–63.

MCKEE, S. A., WULF, W. A., AYLOR, J. H., SALINAS, M. H., KLENKE, R. H., HONG, S. I., AND WEIKLE, D.
A. B. 2000. Dynamic access ordering for streamed computations. IEEE Trans. Comput. 49, 11,
1255–1271.

MICRON. 2004. http://download.micron.com/pdf/datasheets/dram/ddr2/512MbDDR2.pdf.
MOYER, S. A. 1993. Access ordering and effective memory bandwidth. Ph.D. thesis, University of

Virginia.
PEIRON, M., VALERO, M., AYGUADE, E., AND LANG, T. 1995. Vector multiprocessors with arbitrated

memory access. In Proceedings of the 22nd Annual International Symposium on Computer
Architecture. 243–252.

RAGHAVAN, R. AND HAYES, J. P. 1990. On randomly interleaved memories. In Proceedings of the
1990 ACM/IEEE Conference on Supercomputing. 49–58.

RAU, B. R. 1991. Pseudo-randomly interleaved memory. In Proceedings of the 18th Annual Inter-
national Symposium on Computer Architecture. 74–83.

RIXNER, S. 2004. Memory controller optimizations for web servers. In Proceedings of the 37th
annual IEEE/ACM International Symposium on Microarchitecture. 355–366.

RIXNER, S., DALLY, W. J., KAPASI, U. J., MATTSON, P., AND OWENS, J. D. 2000. Memory access schedul-
ing. In Proceedings of the 27th Annual International Symposium on Computer Architecture. 128–
138.

SAH, S., KULICK, S. S., UDOMPANYANAN, V., NATARAJAN, C., AND PAI, H. S. 2006. Memory read/write
reordering. U.S. Patent 7,047,374.

SCOTT, S. L. 1996. Synchronization and communication in the T3E multiprocessor. In Proceedings
of the 7th International Conference on Architectural Support for Programming Languages and
Operating Systems. 26–36.

SHERWOOD, T., PERELMAN, E., AND CALDER, B. 2001. Basic block distribution analysis to find pe-
riodic behavior and simulation points in applications. In Proceedings of the 10th International
Conference on Parallel Architectures and Compilation Techniques. 3–14.

TENDLER, J. M., DODSON, J. S., FIELDS JR., J. S., LEE, H., AND SINHAROY, B. 2002. Power4 system
microarchitecture. IBM J. Resear. Develop. 46, 1, 5–26.

VALERO, M., LANG, T., LLABER, J. M., PEIRON, M., AYGUADE, E., AND NAVARRA, J. J. 1992. Increasing the
number of strides for conflict-free vector access. In Proceedings of the 19th Annual International
Symposium on Computer Architecture. 372–381.

Received May 2006; revised August 2007; accepted October 2007

ACM Transactions on Computer Systems, Vol. 25, No. 4, Article 10, Publication date: December 2007.

